Fingerprint Recognition
A judge has ruled that fingerprint evidence is scientifically unreliable – Economist.com

Vidya Kannan
Abstract: Fingerprints are one of the oldest and most widely used form of biometric identification. Performance of the Recognition and verification step depends on how clear the image is and how reliably we can extract minutiae from the fingerprint images. The image quality could be poor because of low resolution scanners, or cuts and bruises, and corrupted due the skin variations. We employ different image enhancement techniques to enhance the image and then extract minutiae to get reliable minutiae locations.
Keywords: fingerprint, image enhancement, minutiae, fingerprint verification, fingerprint statistics.
Fingerprints have been around for more than a century and are widely used as a form of biometric identification. They are commonly used in forensics, criminal investigations, authenticate people. The fingerprint of an individual is unique [2] and remains unchanged during a lifetime. The fingerprint is based on a pattern of ridges and furrows. A ridge is defined as a single curved segment and a valley is defined as the region between two adjacent ridges. The minutiae, which are the local continuities in a ridge flow pattern, provide the features that are used for identification. Details such as the type, orientation and the location of the local minutiae are taken into consideration when performing minutiae extraction. The set of minutiae types are restricted into only two types, ridge endings and bifurcations, as other types of minutiae can be expressed in terms of these two feature types. [3] Ridge endings are the points where the ridge curve terminates, and bifurcations are where a ridge splits from a single path to two paths at a Y-junction. Figure 1.1 illustrates an example of a ridge ending and a bifurcation. In this example, the black pixels correspond to the ridges, and the white pixels correspond to the valleys.
[image: image53.wmf]10

15

20

25

30

35

40

45

50

0.05

0.1

0.15

0.2

0.25

0.3

Distribution of the FRR & FAR red=FRR, blue=FAR

22.6

18.35

Figure 1: Ridge Ending & a Bifurcation
Fingerprint Classification: Fingerprints can be classified into whorls, archs, loops. This is one of the most difficult problems for both humans and computers. Figure 2 illustrates the various types of fingerprints.

[image: image2]
Figure 2: Fingerprint Classification
Fingerprint Verification & Recognition System:

[image: image3]
Figure 3: Fingerprint Verification and Recognition System Design
Literature Overview:

Image Enhancement: The quality of the fingerprint images is very important for the performance of the fingerprint verification and recognition system. In an ideal condition, the ridges and furrows should alternate and flow in a locally constant direction. In practice, a significant percentage of acquired fingerprint images are of poor quality. The ridge structures in poor-quality fingerprint images are not always well-defined and hence they can not be correctly detected. This could be because of some corruption in the images due to cuts and bruises, dirt in the fingers or low resolution scanners, ridges are not strictly continuous; they have small breaks/gaps, parallel ridges might not well separated and this is due to the presence of noise which links parallel ridges. Image enhancement techniques are used to reduce the noise and enhance the definition of the ridges against the valleys. Figure 4 illustrates the design I have to for image enhancement.

[image: image4]
Figure 4: Image Enhancement Design
Histogram Equalization: To increase visual perception, we expand the pixel value distribution. This is the process to standardize the intensity values in an image by adjusting the grey-level values, so that the normalized image now lies within a desired range of values – 0 … 255. Visualization effects are enhanced.
Fourier Transformation: We divide the image into small processing blocks (32 x 32) and perform the Fourier transform.

[image: image5]
To enhance a specific block by its dominant frequencies, we multiply the FFT of the block by its magnitude a set of times. I used k = 0.45. Increasing k improves the appearance of ridges filling up small holes in ridges and small k can result in false joining of ridges. A termination could become a bifurcation.

[image: image6]
where F-1(F(u,v)) is

[image: image7]
Image Binarization: Binarization is the process of converting an 8-bit grey-level image to a 1-bit binary image. This is done by taking a block of pixels and comparing each pixel to the mean intensity value of that particular block. If the pixel value is greater than the mean intensity value, then it is set 1 (white pixels), else it is set to 0 (black pixels). Hence, after binarization, the ridges are black and furrows are white. This improves the contrast between the ridges and the valleys (furrows).
Image Segmentation: Segmentation is a process of separating the foreground regions from the background regions of the image. The foreground regions in the image correspond to the fingerprint area, while the background region has no information with regards to the fingerprint. Thus segmentation is employed to discard this background region. For image segmentation, I first do an orientation estimation and then extract the region of interest (ROI). Orientation estimation is where I define the local orientation of the fingerprint image and the and in the Region of interest, I separate the background from the foreground region of the image.
(i) Orientation Estimation: I use the Least Square Mean estimation method employed by Hong, et al. to compute the orientation of the image. The procedure for the calculating the orientation of the pixel is as follows:

a. First, we divide the image into block of size W x W and is centered at the pixel (i,j) of the normalized, binarized image.
b. For each pixel at location (i,j), calculate the gradiant δx and δy in the x and y direction respectively. I use the Sobel operator compute the gradiant.

[image: image1.png]
[image: image8.wmf]

[image: image9]
 δx(i,j) δy(i,j)

c. The local orientation of pixel at (i,j) can be estimated as:

[image: image22.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

1

-

2

-

1

-

0

0

0

1

2

1

d. Region is interest: For each block, if the certainty level of the orientation field is below a threshold Ti, then pixels are marked as background pixels. Certainty region is defined by

[image: image23.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

1

-

0

1

2

-

0

2

1

-

0

1

We assume there is only one fingerprint in the image
In the fingerprint area, the variance is very high in a direction orthogonal to the ridge orientation. In the background regions, the variance has no directional dependence Local variance of gray level can be used to locate the fingerprint area

Thinning: This is the final step in image enhancement. There are three methods that can be employed:
(i) Morphological operation using MATLAB (‘open’, ‘close’): Each sub-iteration begins by examining the neighborhood of each pixel in the binary image, and based on a particular set of pixel-deletion criteria, it checks whether the pixel can be deleted or not. These sub-iterations continue until no more pixels can be deleted.
(ii) One-in-all method: extract all thinned ridges from gray level images directly. Their method traces along the ridges having maximum gray intensity values. However binarization is implicitly enforced since only pixels with maximum gray intensity values remain.
(iii) Iterative parallel thinning algorithm: marks down redundant pixels in each small image window. Finally removes all those marked pixels after several scans.
(iv) Morphological operations are employed to join the ridges and remove the spikes from the image. (MATLAB – bwmorph: hbreak,)
Minutiae Extraction: This approach involves using a 3 x 3 window, and examining the number of neighbors for each pixel. This is used by Jain [3] and Ratha et al. [4]. The following table illustrates the minutiae classification based the local neighborhood. A pixel is classified as a ridge ending if it has only one neighbor, and is classified as a bifurcation if it has three neighbors, a crossing if it has four neighbors, an island if it has no neighbors.

[image: image10]
	1
	0
	1

	0
	1
	0

	1
	0
	1

Figure 5: crossing
	0
	1
	0

	0
	1
	0

	1
	0
	1

Figure 6: bifurcation
	0
	1
	0

	0
	1
	1

	1
	0
	0

Figure 7: triple branching

	0
	0
	1

	0
	1
	0

	1
	0
	0

Figure 8: edgepoint
	0
	0
	0

	0
	1
	0

	0
	0
	1

Figure 9: ending/termination
	0
	0
	0

	0
	1
	0

	0
	0
	0

Figure 10: Island
Ridge width calculation: Ridge width is defined as the width between two ridges. The procedure, I employ to calculate the ridge width is:

(i) Sum up all the pixels that are ‘1’ in a row

(ii) Divide the length of the row by the sum. This would be the ridge width.

(iii) To get an approximately accurate ridge width, we should perform this over all the rows & columns and average the inter-ridge widths.
Image Postprocessing: This is a very crucial step in identifying the genuine minutiae. False minutiae maybe introduced because there could some corruption and noise in the image. Figure 11 illustrates some of the false minutiae that can be caused because of noise in the image.
[image: image11.emf]
Figure 11: False Minutiae – Examples.

For example, in the spur, there would be two ridge ending identified. This would be wrong because there is no such ridge ending that can hapeen inbetween two ridges. Also, if you look at (d) – spike, two minutiae would be identified there as well – a bifurcation and a ridge ending.
To remove the false minutiae, I employ some heuristic rules (Ratha et al.). Figure 12 illustrates the rules.

[image: image12]
Figure 12: Example of false minutiae – heuristic rules.

Some of the heuristic rules to remove false minutiae are:

(i) If two terminations are within a distance D and their directions are coincident with a small angle variation. And they suffice the condition that no any other termination is located between the two terminations. Then the two terminations are regarded as false minutia derived from a broken ridge and are removed (4), (5), (6) from the Figure 12.
(ii) Calculate the distance between a ridge ending and a bifurcation. If this is less than the ridge width D, then I classify them both as false minutiae and remove them (1) from Figure 12.
(iii) Calculate the distance between two bifurcations ((b) Hole and (c) Triangle in figure 5. If this is less than the ridge width D, then I classify them both as false minutiae and remove them. (2) (3) from Figure 12.
(iv) Endings that are beyond the margins, remove those minutiae.

(v) If two terminations are located in a short ridge with length less than D, remove the two terminations (7) from Figure 12.

(vi) If several minutiae form cluster, remove all except one closest to cluster mean
For each minutiae, I store them in the form of a x,y coordinate location and the angle of orientation θ
Fingerprint Verification:
Given two minutiae patterns – and input & a template, the minutiae matching algorithm determines whether they are from the impression of the same finger. Some of the things to keep in mind when designing a verification system:
· Finger maybe placed at different position

· Different orientations

· Different downward pressure

· Different shear force

· Spurious minutiae present

· Genuine minutiae absent

· Minutiae maybe locally perturbed

[image: image24.wmf])

)

,

(

)

,

(

(

tan

2

1

)

,

(

)

,

(

)

,

(

2

)

,

(

)

,

(

)

,

(

2

)

,

(

1

2

2

2

2

2

2

2

2

2

2

j

i

V

j

i

V

j

i

v

u

y

u

j

i

V

v

u

y

u

j

i

V

x

y

y

w

i

w

i

u

w

j

w

j

v

x

y

y

w

i

w

i

u

w

j

w

j

v

x

x

-

+

-

=

+

-

=

+

-

=

+

-

=

=

¶

¶

=

¶

¶

=

å

å

å

å

q

Point pattern matching problem

Let
be the set of M minutiae in the template image

[image: image25.wmf])

,

(

)

,

(

)

,

(

)

,

(

)

,

(

)

,

(

*

1

)

,

(

2

2

2

2

2

2

2

2

v

u

y

u

j

i

V

j

i

V

j

i

V

j

i

V

w

w

j

i

y

w

i

w

i

u

w

j

w

j

v

x

e

e

y

x

¶

+

¶

=

+

=

å

å

+

-

=

+

-

=

e

Let
be the set of N minutiae in the input image.

Find the number of corresponding minutia pairs between P and Q and compare it against a threshold
Algorithm: It consists of two stages:
(a) Alignment Stage: Translation and rotation of the input and template is first generated. Input minutiae are aligned with the template minutiae.
(b) Match Stage: The input minutiae and the template minutiae are first converted to a string representation in the polar co-ordinate systems and an elastic string matching algorithm is used to evaluate the similarity between the two strings.
Alignment Algorithm: Let Rd and RD be the set of ridges in the input and template images. Each ridge d є Rd is matched with D є RD as

[image: image13]
L - minimal length of two ridges

i – step size (avg. inter-ridge distance)

di and Di are distances from point i on ridges to axis created by θ. The sampling interval on the ridge is set to be average inter-ridge distance. If S is greater than a threshold (0.8), go to the next step. Otherwise continue to match the next pair of ridges. Compute the translation vector and rotation angle as follows: (least square method can be used)

[image: image14]
γi, and Γi are the radial angles of the ith point with respect to the reference minutia

Let (xd, yd, θd) T be the reference minutia (based on which the transformation parameters are estimated). The N input minutiae are transformed as follows:

[image: image15]
Estimate the rotation and translation parameters and align the two minutiae patterns. Convert the template and input patterns into the polar coordinate system with respect to the reference minutiae and represent them as strings by concatenating each minutia in an increasing order of radial angles

[image: image16]
r - radial distance

e - radial angle

θ - orientation wrt. reference minutia
Match Algorithm: Match the strings Pp and Qp with a modified dynamic programming algorithm to find the edit distance. Edit distance must have the elastic property of string matching.

[image: image17]
α β and γ are the weights associated with radius, radial angle & minutiae direction. δ ε ζ specify the bounding box.

[image: image18]
· α, β, and γ are the weights associated with radius, radial angle, and orientation components

· δ, ε, and ρ specify the bounding box

· Ω is the pre-specified penalty for mismatch

· This scheme can tolerate non-linear deformations and inexact transformations to some extent, but cannot compensate for it

Figure 13: Adaptive Bounding Box
If the two points where exactly aligned with each other, then the pair of corresponding points would be completely coincident. The aligned point pattern matching algorithm needs to be elastic which means it should be capable of tolerating to some extent the deformations due to inexact extraction of minutiae positions and non lineat deformations. This is achieved by placing a bounding box around each template minutiae which specifies all the possible corresponding input minutiae with respect to the template minutiae and restricting the corresponding minutiae in the input image to be within the box.
The edit distance is used to establish the correspondence of the minutiae between Pp and Qp Total number of corresponding minutiae is computed as MPQ.
[image: image26.wmf]MN

M

M

S

PQ

PQ

100

=

The matching score is

Analysis:

Two indexes are well accepted to determine the performance of a fingerprint recognition system: one is FRR (false rejection rate) and the other is FAR (false acceptance rate).
Calculating FAR: The first sample of each finger in the database is matched against the first sample of the remaining fingers to compute the False Acceptance Rate. If the matching g against h is performed, the symmetric one (i.e., h against g) is not executed to avoid correlation.

[image: image19]
Calculating FRR: Each sample is matched against the remaining samples of the same finger to compute the False Rejection Rate If the matching a against b is performed, the symmetric one (i.e., b against a) is not executed to avoid correlation.

[image: image20]
Equal Error Rate:

[image: image21]
At the equal error rate 18%, the separating score 23 will falsely reject 18% genuine minutia pairs and falsely accept 18% imposturous minutia pairs and has 82% verification rate.

Some of the reasons why I have a very high Equal Error Rate (high False Acceptance Rate and False Rejection Rate) could be

· Image Enhancement Algorithms – All genuine minutiae were not identified and a lot of spurious minutiae were not removed. All in some case, very few minutiae were identified. For example, in one sample of fingerprint, there were only 3 minutiae that were identified. This when matched against the rest would definitely give a 100% match.

· Match algorithm & template: My template may not have been the ideal template in the first place to begin with. If my template were something that had only two-three minutiae, it would give me a 100% match with everything. Whereas if my template was something that had about 30 minutiae and the comparing input had a few minutiae, it would probably give me low match score.

Future Developments:
· An ideal template finding algorithm – this would improve my match algorithm.
· Improve my image enhancement algorithm
· Automatically scan and match fingerprints – scanner matlab interface code.
Bibliography:
Hong, L., Wan, Y., and Jain, A. K. Fingerprint image enhancement: Algorithm and performance evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence 20, 8 (1998), 777–789.

Jain, A. K., and Farrokhnia, F. Unsupervised texture segmentation using Gabor filters. Pattern Recognition 24, 12 (1991), 167–186.

Jain, A. K., Hong, L., and Bolle, R. M. On-line fingerprint verification. IEEE Transactions on Pattern Analysis and Machine Intelligence 19,4 (1997), 302–314.

Maltoni, D., Maio, D., Jain, A. K., and Prabhakar, S. Handbook of Fingerprint Recognition. Springer, 2003.

Ratha, N., Chen, S., and Jain, A. Adaptive flow orientation based feature extraction in fingerprint images. Pattern Recognition 28, 11 (1995),1657–1672.
MATHWORKS http://www.mathworks.com
Minutiae Interoperability Exchange Test 2004

Lin Hong, Automatic Personal Identification Using Fingerprints. Ph.D. Thesis, 1998.

D.Maio and D. Maltoni Direct gray-scale minutiae detection in fingerprints. IEEE Trans. Pattern Anal. And Machine Intell., 19(1):27-40, 1997.

N. Ratha, S. Chen and A.K. Jain, Adaptive Flow Orientation Based Feature Extraction in Fingerprint Images Pattern Recognition, Vol. 28, pp. 1657-1672, November 1995.

Alessandro Farina, Zsolt M.Kovacs-Vajna, Alberto leone Fingerprint minutiae extraction from skeletonized binary images, Pattern Recognition, Vol.32, No.4, pp877-889, 1999.

Lee, C.J., and Wang, S.D.: Lett Fingerprint feature extration using Gabor filters, Electron.., 1999, 35, (4), pp.288-290.

Lett., M. Tico, P.Kuosmanen and J.Saarinen. Wavelet domain features for fingerprint recognition, Electroni. 2001, 37, (1), pp.21-22.

L. Hong, Y. Wan and A.K. Jain. Fingerprint Image Enhancement: Algorithms and Performance Evaluation, IEEE Transactions on PAMI ,Vol. 20, No. 8, pp.777-789, August 1998.

FVC2000. http://bias.csr.unibo.it/fvc2000/
FVC2002. http://bias.csr.unibo.it/fvc2002/
Davide Maltoni, Dario Maio, Anil K Jain, Salil Prabhakar. Handbook of Fingerprint Recognition
Salil Prabhakar Anil K. Jain Sharath Pankanti Learning Fingerprint Minutiae Location and Type
Appendix:

How to run the program:

The Matlab folder – fingerprint has five .m files.

The fingerprintGUI.m starts the program. The program has two GUI’s -> one for fingerprint enhancement. The second GUI does the extraction, removes spurious minutiae and performs the match.
a) “Load Image” -> loads the fingerprint image
Image Enhancement:

b) “His-equalization” -> performs the normalization

c) “fftenhance” -> performs the fftenchancement

d) “binarization” -> performs the binarization – adaptive threshold

e) “direction” -> gives orientation estimate of the fingerprint

f) “ROI Area” -> segmentation: draws the region of interest.

g) “thinning” -> performs thinning

h) “remove h breaks” – removes the breaks

i) “Remove spikes” – removes spikes

Minutiae Extraction & Image Post processing

j) “extract” – extracts the minutiae
k) “real minutiae” – removes spurious minutiae

l) “save” – save the minutiae in the format described ealier – x coordinate, y coordinate & angle of orientation – save in a “.dat” format

m) “match” – performs the match between two “.dat” files that you will choose.

I am also including two other files that I used to do the FAR and FRR calculations.

Batch_build_inter.m – performs the FAR
Batch_build_intra.m – performs the FRR

Batch_build.m – performs the both and calculates & graphs the FAR vs FRR (ROC) curve

Batch_template.m – performs the minutiae extraction for the fingerprint image and stores it in a .dat format.

Morphological operations

Remove

h-breaks

& spikes

Thinning

Region of Interest

Orientation estimation

FFT Enhancement

Normalization/

Histogram Equalization

Segmentation

Binarization

Scan the image

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

Minutiae matcher

Remove false minutiae

Image postprocessing

Minutiae Extraction

Morphological operations

Remove

h-breaks

& spikes

Thinning

Region of Interest

Orientation estimation

FFT Enhancement

Normalization/

Histogram Equalization

Segmentation

Binarization

� EMBED Equation.3 ���

Image preprocessing

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED Equation.3 ���

4

3

7

6

5

2

1

[image: image27.wmf](

)

(

)

{

}

Q

N

Q

N

Q

N

Q

Q

Q

p

e

r

e

r

Q

q

q

,

,

,...,

,

,

1

1

1

=

[image: image28.wmf](

)

(

)

{

}

P

M

P

M

P

M

P

P

P

p

e

r

e

r

P

q

q

,

,

,...,

,

,

1

1

1

=

[image: image29.wmf](

)

(

)

{

}

Q

N

Q

N

Q

N

Q

Q

Q

y

x

y

x

Q

q

q

,

,

,...,

,

,

1

1

1

=

[image: image30.wmf](

)

(

)

{

}

P

M

P

M

P

M

P

P

P

y

x

y

x

P

q

q

,

,

,...,

,

,

1

1

1

=

[image: image31.png][image: image32.png][image: image33.png][image: image34.png][image: image35.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

1

-

0

1

2

-

0

2

1

-

0

1

[image: image36.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

1

-

2

-

1

-

0

0

0

1

2

1

[image: image37.wmf])

)

,

(

)

,

(

(

tan

2

1

)

,

(

)

,

(

)

,

(

2

)

,

(

)

,

(

)

,

(

2

)

,

(

1

2

2

2

2

2

2

2

2

2

2

j

i

V

j

i

V

j

i

v

u

y

u

j

i

V

v

u

y

u

j

i

V

x

y

y

w

i

w

i

u

w

j

w

j

v

x

y

y

w

i

w

i

u

w

j

w

j

v

x

x

-

+

-

=

+

-

=

+

-

=

+

-

=

=

¶

¶

=

¶

¶

=

å

å

å

å

q

[image: image38.wmf])

,

(

)

,

(

)

,

(

)

,

(

)

,

(

)

,

(

*

1

)

,

(

2

2

2

2

2

2

2

2

v

u

y

u

j

i

V

j

i

V

j

i

V

j

i

V

w

w

j

i

y

w

i

w

i

u

w

j

w

j

v

x

e

e

y

x

¶

+

¶

=

+

=

å

å

+

-

=

+

-

=

e

[image: image39.wmf](

)

(

)

{

}

P

M

P

M

P

M

P

P

P

y

x

y

x

P

q

q

,

,

,...,

,

,

1

1

1

=

[image: image40.wmf](

)

(

)

{

}

Q

N

Q

N

Q

N

Q

Q

Q

y

x

y

x

Q

q

q

,

,

,...,

,

,

1

1

1

=

[image: image41.png][image: image42.png][image: image43.png][image: image44.png][image: image45.wmf](

)

(

)

{

}

P

M

P

M

P

M

P

P

P

p

e

r

e

r

P

q

q

,

,

,...,

,

,

1

1

1

=

[image: image46.wmf](

)

(

)

{

}

Q

N

Q

N

Q

N

Q

Q

Q

p

e

r

e

r

Q

q

q

,

,

,...,

,

,

1

1

1

=

[image: image47.jpg][image: image48.png][image: image49.jpg][image: image50.wmf]MN

M

M

S

PQ

PQ

100

=

[image: image51.wmf]10

15

20

25

30

35

40

45

50

55

0

1

2

3

4

5

6

7

8

Distribution of the FAR

[image: image52.wmf]0

10

20

30

40

50

60

70

80

90

0

5

10

15

20

25

30

35

40

Distribution of the FRR

_1195823937.unknown

_1195825940.unknown

_1195826356.unknown

_1195825325.unknown

_1195825939.unknown

_1195824009.unknown

_1195825254.unknown

_1195823862.unknown

_1195823863.unknown

_1195620638.unknown

