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7. TRANSFORM CODING  
 

 
General idea: Coding, compression, and other key processing operations are performed after a 
transformation where things are more favorable for the task.  This is achieved by collecting 
samples into vector of dimension k that is multiplied by a transformation matrix T and the 
resulting coefficients are processed either as a vector or individually as scalars. Processing could 
be filtering, feature extraction, and compression.  Dominant transformations are Fast Fourier 
transform (FFT) for filtering, Discrete Cosine Transform (DCT) and Wavelet Transforms (WT) 
for image compression, Subband Coding (SBC), Linear Predictive Coding (LPC) are used for 
speech compression.  

 
Represent k samples (or pixels) of input as a column vector: , where t is the 
usual transpose operation. Let T be a kxk invertible matrix. Then the communication problem can 
be formulated as; 

t
kXXXX ),,,( 21 L=

            (7.1) )ˆ(ˆ),(ˆ),( 1 YTXYQYXTY −===
• It is important to note that MSE same in both domains (before and after the transformation), 

which ensures that inverse transform will not amplify quantization error.  
• Determinant of the autocorrelation matrix of the input vector is unchanged: 
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Typical transforms commonly used: 
• Fourier 
• DCT  
• Wavelet  
• Karhunen-Loeve  
• Hotelling, Hartley, and Hadamard 
•  Principal Value 
• Walsh and  Fractal (Typically done digitally.) 

DFT and its Inverse 

DFT: It is a transformation that maps an N-point Discrete-time (DT) signal x[n] into a function of 
the N complex discrete harmonics. That is, given 1,,2,1,0];[ −= Nnnx L , an N-point Discrete-
time signal x[n] then DFT is given by (analysis equation): 

  1,,2,1,0][)(
1

0

2

−== ∑
−

=

−
NkforenxkX

N

n

nk
N

j
L

π

        (7.3)  

and the inverse DFT (IDFT) is given by (synthesis equation): 
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1. These two equations form DFT pair.  

2. They have N-point resolution both in the discrete-time domain and discrete-frequency domain. 

3. Always the scaling factor  is associated with the synthesis equation (inverse DFT). N/1

4.  is periodic in )(kX N  or equivalently in Nk /2π=Ω ;  that is, 

)())(2()2()()( NkXNk
N

XXXkX kk +=+=+Ω=Ω=
ππ                 (7.5) 

5. x[n] determined from (7.4) is also periodic in N ; 

][][ Nnxnx +=               (7.6) 

 
Example 7.1: Compute the DFT of the following two sequences: 
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Let us use this information in (7.3) to compute DFT values: 
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Similarly, 
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• Watch for the conjugate symmetry of terms; i.e., complex harmonics come in pairs. 

Matrix Representation of DFT 
Write the variables involved in matrix form:  and TNxxxx ]]1[,],1[],0[[ −= L

Nj
N eW /2π−= : 
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Then the weight matrix is simply: 
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which is normally referred as DFT matrix and the resulting transform vector becomes: 
       (7.9) xWNXXXX T .)]1(,),1(),0([ =−= L

•           (7.10a) knnk WW ][][ =

•           (7.10b) TWW =
• ; where * stands for the complex conjugate.    (7.10c) *1
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With these we can write the inverse DFT (IDFT) as follows: 

  1,,2,1,0).(1][
1

0
−== ∑

−

=

− NnforWkX
N

nx
N

n

kn
N L        (7.11a) 

  XWXW
N

x ..1 1* −==         (7.11b) 

These notes are © Huseyin Abut, February 2006 



 82

NINWWW
N

W ...1 **1 ==−  with  (7.12) matrixidentityNxNI N :

Example 7.2: Consider a discrete pulse signal .2.0])3[(])1[(][ sTwhereTnuTnunTx =−−+=   

(a) Use a six-point DFT to compute  (b) Compute the IDFT of   ).(kX ).(kX
Let us start the samples at  then 6 samples of the periodic extension would be 2.0−=t

]1,0,0,1,1,1[][ =nx . 
Then the script is simply: 

% Example 7.2 
% Part (a) 
x=[1,1,1,0,0,1]; N=size(x,2); T=0.2; 
stem(x); 
X=fft(x); 
disp(X); 

Answers>>   Columns 1 through 4  
   4.0000      1.5000 - 0.8660i  -0.5000 + 0.8660i        0   
 
  Columns 5 through 6  
  -0.5000 - 0.8660i   1.5000 + 0.8660i 
 

Mag=abs(X); Phase=angle(X); 
% Plots; figure; 
plot(n,Mag,'*'); figure; 
plot(n,Phase,'+'); 

 

% Part (b) 
xr=ifft(X); 
figure; 
stem(xr); 

     

  
Input signal is exactly recovered by means of a full DFT and IDFT process. 
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Example 7.3: Consider the discrete-time representation of a cosine signal: 
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• First term is 0 when  and it is 1≠k .12/ =kforNA  
• Second term is 0 when 1−≠ Nk  and it is .12/ −= NkforNA  

• Final result becomes:  ))]1(()1([
2

)( −−+−= NkkNAkX δδ  

where the first term represents the positive frequency term and the other one is the mirror 
image as expected.  
Now let us try to implement that using DFT with 48-points and 127-point of sampled versions: 
 
% E1xample 7.3 Sampled Cosine with N=48 
N = 48; 
n =[0:1:N-1]; 
k = n; M = 32; 
xn = cos(2*pi*n/M); 
Xk = fft(xn); 
magXk = abs(Xk); 
PhaseXk = angle(Xk); 

% Now try it with  
N = 127; 
n =[0:1:N-1]; 
k = n; M = 32; 
xn = cos(2*pi*n/M); 
Xk = fft(xn); 
magXk = abs(Xk); 
PhaseXk = angle(Xk); 

% Plots 
axis([1 2 3 4]); axis; 
stem(xn); xlabel('k');ylabel('x(n)'); 
title('sequence x(n) = cos(2*pi*n/32) for N = 48'); 
grid;  figure; axis([0,47,0,18]); 
plot(n,magXk,'o'); 
xlabel('k');ylabel('|X(k)|'); 
title('Magnitude of DFT for N = 48'); grid; 
figure; axis([0,47,-2,2]); 
plot(n,PhaseXk,'*'); 
xlabel('k');ylabel('|X(k)|'); 
title('Phase of DFT for N = 48'); 
grid;axis; 

% Plots 
axis([1 2 3 4]); axis; 
stem(xn); xlabel('k');ylabel('x(n)'); 
title('sequence x(n) = cos(2*pi*n/32) for N = 127'); 
grid;  figure; axis([0,47,0,18]); 
plot(n,magXk,'o'); 
xlabel('k');ylabel('|X(k)|'); 
title('Magnitude of DFT for N = 48');grid; 
figure; axis([0,47,-2,2]); 
plot(n,PhaseXk,'*'); 
xlabel('k');ylabel('|X(k)|'); 
title('Phase of DFT for N = 127'); 
grid;axis; 
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Even though we were expecting two harmonics we have ended up plots needs some explanation: 

• Sampled signals are becoming more like a continuous signal as N increases. 
• Magnitude plots are not located at two harmonics but expand over the frequency range, 

which is called “Leakage” in the business. 
• Symmetry is respect to the center of the plots rather than  2-sided spectral halves, which is 

due to the periodic behavior of the DFT. 
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Fast Fourier Transform (FFT): FFT since its introduction by Cooley-Tukey almost a half 
century ago has been playing historically sustained significant role in the development of DSP 
since it is the most widely used “fast algorithm” in solving many engineering challenges, 
designing filters,  performing spectral analysis, estimation, noise cancellation and benchmark 
testing devices and systems, etc. Also, it is also very readily useable for computing the inverse 
transforms. Consider the definition of DFT in (7.3) 
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To appreciate its computational efficiency let us define:  

      (7.14) 
AccumulateComplexAddComplexMultiplySinMultiplyCos

AddComplexMultiplyComplexOP
1111

111
+++=

+=

• To compute N -Point DFT we need  .2 OPSN
• Cooley-Tukey basic FFT algorithm requires   .log. 2 OPSNN

m mN 2=  DFT OPs Cooley-Tukey FFT OPs FFT Savings 

1 2 4 2 50% 
2 4 16 8 50% 
3 8 64 24 62.5% 
4 16 256 64 75% 
5 32 1024 160 84.4% 
6 64 4096 384 90.6% 
7 128 16384 896 94.5% 
8 256 65536 2048 96.9% 
9 512 262144 4608 98.2% 
10 1024 1048576 10240 99.0% 

• 99% savings in computational complexity is unheard of in any other fast algorithm in science. 
Even for reasonable and frequently observed FTT sizes of 128 or 256-points FFT we are in the 
90% savings range. 
 

DCT and its Inverse 
Let us introduce the discrete cosine transform and its inverse based on 8x8 image pixel blocks:  
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Why DCT so important? 
• It is real, and can be computed by an FFT. It has excellent energy compaction for highly 

correlated data.  
• It won in the open competition for early international image compression standards (1992-93 

JPEG standard). 
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• Once we have transform, the question is how to quantize & code them? 

Several options with two broad classes: 
1. Scalar quantization: Simple and pretty good if the encoding rate is high and we normally use 

subsequent entropy coding. Only need to pick the number of quantizer size for each quantizer. 
2. Vector quantization: Quantize groups (subbands, wavelets) as vectors (complicated); followed 

by a runlength coding scheme and an entropy coder. 
 
64-point (8x8) DCT basis functions: DCT coefficients can be viewed as weighting functions 
that, when applied to the 64 cosine basis functions of various spatial frequencies (8 x 8 templates), 
will reconstruct the original block. 
 

 
 

 
Example 7.4: Let us explore the above concept for encoding the image of Saturn (Matlab demo) 
keeping and encoding only a group of basis functions (white squares). 
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Example 7.5: Let us explore the impact of rate, basis functions and the block size on DCT using 
VcDemo on sample images including Lena. Details of compression using DCT on Lena: 

 
Typical artifacts of DCT: 
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Subband and Wavelet Transforms and Coding 
 
General Idea:  Instead of using block transforms, we pass the input image (signal) through a filter 
bank with approximately non-overlapping pass bands. A form of transform of an entire image as a 
single block, but implemented by locally sliding-block linear filters. These filters are known as 
“quadrature mirror filters (QMF)” and have exact reconstruction property in the absence of 
compression (quantization) as depicted below. 
 
  DECOMPOSITION          SYNTHESIS 

        
 
Example 7.6: Let us explore the impact of bit rate, number of bands and types of decomposition, 
and the filter size on subband decomposition using VcDemo on sample images including Lena. 
 
Alternately, we can use pyramid decomposition using wavelet transforms. 
 

 
2-stages of uniform decomposition leading to 16 uniform subbands (left); pyramidal decomposition leading 

to 10 octave-band subbands (incomplete tree) (middle), and a wavelet decomposition (right). 

Discrete Wavelet Transform (DWT) and Compression 
One-Dimensional DWT decomposes a one-dimensional (1-D) sequence (e.g., line of an image or a 
segment of speech into two sequences called subbands, each with half the number of samples, 
according to the following procedure: 
• 1-D sequence is separately low-pass and high-pass filtered. 
• Filtered signals are down-sampled by a factor of two to form the low-pass and high-pass 

subbands. 
• This process is called the wavelet transform analysis stage.  
• In the absence of compression or channel errors, the synthesis can recover an exact copy of the 

original data.  
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The decomposition and synthesis process in the z-domain (after z-transform) results in: 
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2
1)(ˆ

11001100 zXzgzhzgzhzXzgzhzgzhzX −−+−++=        (7.16) 

 
                                                                                         Aliasing distortion  
Aliasing will be cancelled and the exact recovery will take place if these filters have the following 
properties: 
     and )()( 10 zhzg −= )()( 01 zhzg −=−         (7.17) 
Example 7.7: LeGall filters for two-channel filter bank with perfect reconstruction.  
Impulse responses of analysis filters:  
LP filter: )2(25.0)1(5.0)(5.1)1(5.0)2(25.0)(0 −−−+++++−= nnnnnnh δδδδδ     (7.18a) 
HP filter: )1(25.0)(5.0)1(25.0)(1 −+−+= nnnnh δδδ           (7.18b) 

Impulse responses of synthesis filters:  
LP filter: )1(25.0)(5.0)1(25.0)(0 −+++= nnnng δδδ           (7.19a) 
HP filter: )2(25.0)1(5.0)(5.1)1(5.0)2(25.0)(1 −−−+−+++= nnnnnng δδδδδ              (7.18b) 

 
DWT Benefits: 
• Multiple resolution representation. 
• Lossless representation with integer filters. 
• Better de-correlation than DCT, resulting in higher compression efficiency 
• Use of visual models: DWT provides a frequency band decomposition of the image where 

each subband can be quantized according to its visual importance (similar to the quantization 
table specification in JPEG-DCT). 
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2-d Discrete Wavelet Transform and Examples 

 
 

Example 7.8: Consider the Lena image and perform 3-level wavelet decomposition.  
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Example 7.9: Let us explore using Matlab Slideshow demo of the 2-D wavelet compression. 
 
Example 7.10: Let us the performance of encoders using 2-D Wavelet from VcDemo on Lena for 
levels 2,4, 6,  and bit rate 0.5 bit/pixel 
Encoder: #Resolution levels       :  2  
Target bit rate      : 0.50 (bpp)                   Decoded bit rate: 0.50 (bpp) 
Target file size    : 131072 (bits)                          Decoded #bits   : 131072 (bits) 
 Mean Square Error    : 353.4 
 Signal-to-Noise Ratio   :   8.1 (dB)                      PSNR               :  22.6 (dB) 
 
Encoder: #Resolution levels       :  4 
Mean Square Error    : 19.6 
 Signal-to-Noise Ratio   :  20.7 (dB)                      PSNR               :  35.2 (dB) 
 
Encoder: #Resolution levels       :  6 
Mean Square Error    : 17.7 
 Signal-to-Noise Ratio   :  21.1 (dB)                    PSNR               :  35.6 (dB) 
 
We can see the impact of bit (compression) rate by varying the rate parameter up and down. 
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