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Chapter10: Image Processing in the Spatial/Frequency Domains
and Edge Detection

Processing in Spatial-Domain:

Origin N

E@' (x,¥)

Image fx. v

T

Operations in the spatial domain follows a generic formula:
g%, y)=TLF(x,¥)] (10.1)

If the support region is only a single pixel then they are known as point operations. If it is over a
region then called mask operations.

Intensity transformation function:
s=T(r) (10.2)
where S,I are input and output variables, respectively.

Examples:
Negation: Below we have the original image from a digital mammogram and its negated version.

Pixel differencing: Finding vertical edges: An edge is a junction between two pixels where there is
a significant change in gray-level. A simple operation to find vertical edges is just to subtract each
pixel’s gray-level from that on its right. If changes bigger than, say, 10 gray levels are regarded as
significant, then we can produce a binary image indicating where there are edges. Consider a 3x4
segment of image:

4| 5| 6| 7 5167 5| 6| 7
4]14(17)|20(21 > 3 311 = 0] 0] 0
5]19|30|35|36 11 51 1 1] 0] 0
6]18{45|40(38 27(-5(-2 1] 0] 0
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Note that we have to make an arbitrary choice to put the result of subtracting (4,4) from (5,4) into
(5,4). The second operation is thresholding. Choosing the threshold (in this case 10) is a problem in
its own right. If we want to detect all vertical edges, then we need to threshold so that we record a “1”
wherever the difference is greater than 10 or less than -10. These two operations, though simple, in
fact conform to the structure used by a very wide range of visual systems.

:"4:: R R T R Y B -

'«*ll it '-‘-_.-:»‘;--!f.‘:x_._f-__\,-----.;

ow vl - -
"3

Original 8-bit image ifferenes One-bit thresholded image (edées)

Log and Power LawTransformations: They are defined by one of the following two expressions:
s=c.log(l1+r) (10.3)

s=cr’ (10.4)
where r is the input and s is the output of the transformation, r is constant (usually 1.0) and r > 0.

Origin —,

@- (5, ¥} i
high_out 1 r

gamma < | gamma = | aamma = |

Image fix, ) low our

low_in high_in law_in high_in lowy_in high_in

Below we display two pixel level enhancements: Pixel intensity expansion in the range [0.25,0.75]
and the power transformation with the y = 2.0 from mammogram pictures above.
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3. Histogram Processing: Probability approximations are found for each pixel by computing first the
frequency of occurrences of each gray level (histogram): h(r, ) =n,/n for k =0,1,---,L—1 and

then they are normalized to obtain probabilities. They could be histogram points, bar graphs, discrete
impulses (stem) or continuous plots.

Transformation based on histogram equalization: Given that we know the pdf (or histogram) for
the pixel intensity in an image, the histogram equalized output is the cdf (area under the pdf curve
(accumulated histogram values):

.
Continuous case: S=T(r)= I p,(u).du (10.5a)
0
K K
Discrete case: S, =T(I, ) = z p,(ry) = ZHJ- /n fork=0,,---,L-1 (10.5b)
j=0 j=0
Inverse transformation can be used to come back to the original case, i.e., invertible operation:
ne=T7(s,) (10.5¢)

There is a neat 5-point algorithm for implementing histogram equalization including examples in GW
p:99-102:

w0t
tl_ T T T T I

5+ -
4+ -
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8000 |- 4 soonl |/ .
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4000 - A 4000 [ -
2000 ‘ ] 4 z000f / -
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4. Image enhancement with convolution masks with m rows and n columns:

a b B
g, y)= D, D w(s,u).f(x+s,y+u) with a= m2

s=—a u-b

1-

n-1

>

2
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(10.6)

Consider one row of the image and a horizontal mask, above equation is operated only over a single
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The impact on the image is smoothing (averaging) resulting in emphasizing vertical edges.

-1

+1

|12\13|13|19\30|35\36|15|19|15|

X x % x\‘ X
1] i, =]
RSV A ERY

N
LS

e Masks could be vertical, which results in vertical edge enhancement.
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e Masks could be more than 2 columns or rows, combining a larger range of pixel values. For
example the example below combines some smoothing and horizontal differencing:

-1 -2 0] 2] +1

e Mask can be 2-dimensional—in fact, just like a small piece of image.

col

18 (192019171615
1911 910121419
1711920231110 12
141171202110 912
1930 (3536151915
18 (45 (40|38 |16 15|12
-11-1 -1 -1
(-1x61)+(-1x19)+ -1 3 -1 3 Tow
(-1x18)+H(3x17) =
A7 I|' | co
col Il' '|
i |
, .
y \.
A7 '|I
1
: |
TOW 23
e Diagonal Differences:
-1 0 0] -1
0|+1 1] 0

e Center surround mask (averaging, smoothing);

-1/8 | -1/8 | -1/8
-1ig| +1|-1/8
-1/8 | -1/8 | -1/8
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e The example below also combines smoothing and differencing, and is known as the Sobel
operator.

0 +1
2] 0] +2
0 +1

Gaussian smoothing mask: A more effective smoothing mask falls off gently at the edges, where its
width is described by the standard deviation o.

Profile on any axis
through centie

G

“ ™A
o -
A

L
-1l ] 1l

-1/8 | -1/8 | -1/8

* -1/8| +1|-1/8
-1/8 | -1/8 | -1/8
—
convolve

They are effectively used for removing any texture with a scale smaller than the mask dimensions.
Small-scale texture is said to have a high spatial frequency. Smoothing removes this, leaving low
spatial frequencies. Here is the effect of progressively increasing s. Its values are 1, 2 and 4 in the 3

smoothed images.

¢ In addition, there are median filtering masks and Laplacian masks used in spatial-domain image
enhancement.
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Processing in Frequency-Domain: FT for an MxN image is given by:

1 N— . ux vy
1 E R —jam( )
F(u,v)=—M N DD f(xye  MN (10.7)
: u=0 v=0
| I
| I
| 1 I : :
: '\'.V'"—'l: N—1 : M2 N—=1 :
| 1 I
| 0 1H"I LY L ] 0 \"I \" -
| ] 1 I 0 u
| 1 |
| | |
2 — 1 ! [ s
I MY
+-- _— SR 4 Tul
I
i |\ i
| M -1 l i
| — : : M—1—y
| e e A — | _
: : Four back-to-back : :
| 1 periods meet here, | H
1 1 I i I
——| i
- | = Periods of the 2-I DFT.
EI = M x N data array resulting from
the computation of £, ).
ahb

FIGURE 4.2 (a) M = N Fourier spectrum (shaded), showing four hack-to-back quarter
periods contained in the spectrum data. (b) Spectrum obtained by multiplying f{x, ¥) by
(—1)**¥ prior to computing the Fourier transform. Only one period is shown shaded because
this is the data that would be obtained by an implementation of the equation for Flu, o) .
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© Hiiseyin Abut, February 2006



123
log(|Fiwwv)|)
column
oW

Nt

-,

™

|
W )= (0.0}
Lena (512x512) 8-bits/pixel original. FFT log magnitude without placing (0,0) in the center, shifted
algorithm in Image Processing toolbox in Matlab.)

version (commonly known as the DFT) and the corresponding phase spectrum. (using 2-D fft

Image

FFT log Magnitude (not shifted)

FFT log Magnitude (shifted)

FFT Phase (shifted)
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Image FFT log Magnitude (not shifted)

FFT log Magnitude (shifted) FFT Phase (shifted)

San Dieg. .. -' Adobe 4.

Image Enhancement via Filtering

Frequency domain filtering operations

; Filter Tnverse
" Fo HFET function Fourier
ol Hiu,v) Iransiorm
File, v) Hiu, 01 (1, v)

Pre- ( k) Post-
processing processing
fle.y) glx,y)
Input Filtered
image image

Even more critical than the case in 1-D signal filtering, fast convolution is ubiquitously used to
implement filters in image processing applications. Recall that 2 forward FFTs, 2 inverse FFTs and a
point-by-point image multiply in the frequency-domain will be at a significantly smaller fraction of
the time required to perform a 2-D comnvolution.
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Select an Image:

Filtered lmage

vs -~ Yertigo

vpe of fiter:
lowwpazs

Winidowy method:

Cutaff:
.
Cirder:

s

Freguency Response
. Design Method:

OICHICHE®
A EHEHE
= a 3_ =
mEENERNT

: Select an lmage:
Filtered lmage =
Yertigo

I

Type of fiter:

I

highpaszs

Winidowy method:

Cutafs:
Ciroer:

Filter Coefficients

Design Method:

0.8,

06/ 11z fl
8 05| gl b
[i 0. B
15 1 i

Apply Fitter
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Original Pepper Image Filtered lmage

Filter Coefficients

Appaly Fitter

Original Pepper Image Filtered lmage

Filter Coefficients Freguency Response

Appaly Fitter
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Select an Image:
Pepper
yie of fiter:
lowwpazs
Windowy method:

Bartlett

Cutafs:
Ciroer:

Des=ign Method:

Select an Image:

Pepper

I

Type of fiter:

I

highpaszs
Winidowy method:

Bartlett

Cutafs:
Ciroer:

Des=ign Method:
() fzamp2

(%) fwvinc

I

() fwvingl2

() firanz2

Info

Cloze
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Ideal low-pass using rectangular spatial window:
Hin, )

e

H (0. )
4

1

= M1
f’II

FIGURE 4.10 (a) Perspective plot of an deal lowpass Gilter transfer Munction. (b)) Filler displaved as an
image. (c) Filter radial cross section.

Power Distribution through 2-D DFT in images:

aaaaaaad

u b

FIGURE £.11 (1) A amarge of seee SO0 SO0 paxels and (1) its Fourer spectomm, The
superimposed circles have raci values of 5, 15, 30, &0, and 230, which enclose 2.0,
D, 964, 980, and Y955 of Lhe image power. respeclively.

Ideal low-pass filtering results in blurring due to smoothing (averaging) and ringing due to Gibbs
phenomenon of representing using a finite number of terms in representing an ideal rectangular pulse.
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FIGURE 4.2 (=) A
discrete function
o M poin s, and
(b its Fouricr
specirum. (c) A
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MOS0 points,
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FIGURE 4.12 (a) Owriginal image. (hi—({) Results of ideal lowpass lilering with cutolf
frequencies set at radu values of 5, 15, 30, 80, and 230, as shown in Fig. 411 b The
power removed by these Dlters was 8, 54,7306, 2 and 0035 of the tatal, respectively,
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Low-pass filtering using Gaussian Low-pass filter characteristics.

Hiw, v} H{w, )
"
(K1

0667

J = D e

H(u,v) =™ @20

FIGURE 4.17 (a) Perspective plot of & GLPF transfer function. {b) Filter displayed a2 an image. (¢} Filter
radial cross sechions for varous values of £,

I

Application to Text Smoothing:

FIGURE 4.19 Historically, cerlain computer Historically, certain computer

{a) Sample text of programs were writken using programs were written using
poor resolution

(note broken only two digits rather than only two digits rather than
characters in four to define the applicable four to define the applicable
j?ﬂ‘glgl‘:{ﬁ'l '::1*‘“']- year. Accordingly, the year. Accordingly, the
filtering with company's software may company's software may
GLPF (broken recognize a date using "00" recognize a date using "00"
e e as 1900 rather than the y

as 1900 rather than tlﬁ
2000.

joined ). 2000,

Low-pass filtering using Butterworth Low-pass filter characteristics:

Hiu, v) Hiu, ]

0st

E 4.14 (a) Perspective plot of a Butterworth lowpass filter transler funetion. (b) Flter displayed as an
e. (¢) Filter radial cross sections of arders 1 through 4,
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High-pass filtering using ideal, Butterworth and Bartlett windows:

abe
de f

FIGURE 4.17 Top row: Perspective plots of ideal, Butterworth, and Gaussian highpass Gllers. Bottom row:
Corresponding images.

Padding Images with zeros is very frequently used for computational efficiency gains. For instance an
image of size 480x640 will be processed significantly faster via fast convolution using 2-D FFT by
padding both rows and columns with zeros to bring to a 512x1024, i.e., (2°x2'°) and then doing 2-D
IFFT. Otherwise, we would need 480x640 double convolution or IDFT, which are both equally
costly by a couple of orders of power!
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Edge Detection

General Principles:
In a continuous 1-D signal f(x), an edge is defined as the point where the derivative of the signal f’(X)
has an extremum, or equivalently where the second derivative f’(X) is zero, as shown below.

- — decreasing

f(x) / M\ edge

L
k4

fix) /\\

-f”/;\‘“ — : //\
v v

Task: Extend these concepts to:
1) two-dimensions, and
i1) discrete images.

¥
k

L J
k J

The first can be accomplished by replacing the first and second derivatives with the gradient and
Laplacian operators, respectively.

Approximating the first and second derivatives (partials) with the appropriate finite difference
operators can do the latter.

Because the derivative (hence finite difference) operators are indeed high-pass filters, edge detection
is very sensitive to noise. Two types of errors result due to noise:

1. False positives: Noise may generate many small peaks in the magnitude of the gradient resulting
in false edges.

2. False negatives: Noise may result in shifts in true edge locations, resulting in missing actual edge
pixels.

There are many different edge detection algorithms, which distinguish themselves on how they
deal with these problems.
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Gradient-Based Methods:
Gradient vector for a continuous image f.(X;,X,) is defined as:

61:c (Xl > Xz)

OX
V. (X, X,) = ! 10.8a
C( 1 2) afc(X19X2) ( )

OX,

of . (X, X of . (X, X
and its magnitude: | Vf_ (X, X,) |= [ e (X, 2)]2 +[ (X, 2)]2 (10.8b)
0X, 0X,
Edge detection using gradient-based techniques normally employ a thresholding mechanism:

[ VE.(X, %) 2T (10.9)

where T is a threshold, which is determined in many applications from the image database at hand.

Discrete Approximations:

Forward Difference: W = f(n,+1,n,)—-f(n;,n,) (10.10a)
1

Backward Difference:% ~ f(n,ny)—f(n,—-1Ln,) (10.10b)
1

Central Difference: % z%{f(n1 +1,n,)—f(n,—-1Ln,) (10.10¢)
1

Average Central Difference:
of.(x,%X,) 1
°T112~g{[f(n1 +1,ny) - f(n —1,ny)]

+[f(n,+1,n, =) - f(n, —1,n, —1)] (10.10d)
+[f(n, +Ln, +D)—f(n, =1L,n, + )]}

These computations can be interpreted as passing FIR filters, that is, 2-D convolution of an image
with an impulse response. If h (n;,n,) and h,(n,,n,) denote the filter impulse responses that

approximate the horizontal and vertical partials, respectively. Then, the gradient of a discrete image
can be written as:

Vfc(nlsnz) :{

fxl(nl,nz)}_|:f(n1an2)**h1(nl’n2):| (10.11)

fxz(nlﬂnz) f(nlanz)**hz(npnz)
where ** represents a 2-D convolution, i.e., convolution over columns followed by another
convolution over rows. The magnitude and the direction of the gradient vector at point n;,n, are

given by:
| Vic(n,ny) = \/[fx1 (ny.ny)1° +[fX2 (n.n)1? (10.12a)
f. (n,n
ZVf(n,,n,) = arctan Do (M) (10.12b)
fxl (nlanz)
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With the following mask, we discuss some of the commonly used FIR filter kernels for h,(n,,n,)
and h,(n;,n,). The Prewitt kernel represents the average central difference approximation. The
kernels for the partials in X; and X, directions are given by:

-1 |0 1 1 1 1

-1 |0 1 0
-1 |0 1 -1 -1 [-1

These look like Sobel kernel (mask), where the latter applies twice the weight to the center row
horizontally and vertically given by:

-1 |0 1 1 2 1
-2 |0 2 0 0
-1 [0 )1 -1 (-2 |-l

Isotropic filters must not favor any particular edge direction. Prewitt and Sobel filters respond to
diagonal edges differently than the horizontal and vertical edges because their coefficients do not take
into account larger pixel distances in the diagonal directions. The Prewitt filter is less sensitive to
diagonal edges than to horizontal and vertical ones, while the opposite is true for the Sobel filter.

Roberts Kernel:

0 1 1 0
-1 |0 0 -1

Laplacian-Based Methods:
Laplacian of a continuous image is defined as the dot product of the gradient by itself:
0% fo(x. %) | 07 f (%1 %)

V2f (%,%X,)=VoVF (X,X,)=
C(l 2) C(l 2) aXlz a)(g

(10.13)

The Laplacian is isotropic favoring no particular edge direction. In order to compute a discrete
approximation to Laplacian, we can use the forward difference to approximate the first derivative,
8fc (Xl > X2 )
0%,

and then the backward difference to approximate the second derivative as the derivative of the first
derivative:

ai;l[afc(alesxz)] ~[f(n +Lny)—f(n,n)l-[f(n;,ny) = f(n —1,ny)] (10.15)
=f(n, +Lny,)-2.f(n,,ny)+ f(n,-1Ln,)
When we place this and the corresponding one for the other variable X, to get an approximation to
the Laplacian equation defined above:

V2 E.(X, %) = f(n, +1,ny)+ f(n, —1,n,)+ f(n,n, + )+ f(n,,n, —1)—4.f(n,,n,) (10.16)

~ f(n, +1Ln,)—f(n;,n,) (10.14)

This last equation for the Laplacian process is normally expressed as an FIR filter with an impulse
response:
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0 1 0
1 -4 |1
0 1 0

However, depending upon the choice of derivative approximations other FIR filter kernels can also
be obtained, such as:

1 |1 |1 S EE!
1 |18 |1 2 |4 |2
1 [1 1 1|2 [

Laplacian of Gaussian (LoG) Filter: It is a Gaussian filter with the scale parameter c:

2 2 2 2 2
X + X5 —20 X{ + X
he (X,,X,) = ———2———.exp{- —— 2} (10.17)
o 20

Digital implementation of the LoG filter requires sampling h,(X;, X, ) on a large enough support for a

particular value of . It is important to note that the LoG filter is separable, hence can be efficiently
implemented as a cascade of two 1-D filters.

Canny Edge Detection: Canny’s edge detection procedure is among the most widely used
employing elements of both gradient-based edge detection and Gaussian filtered scale space. It
consists of the following steps:

1. Image smoothing with a Gaussian filter with a scale parameter c.

2 2

n n
LD, (10.18)
20

2. Find the image gradient, including magnitude and direction, at each pixel, using one of the
operators, e.g., Roberts or Sobel.

3. Edge thinning by non-maximum suppression: Gradient direction is used to thin edges by
suppressing any pixel response that is not higher than those of two neighboring pixels on either
side of it along the direction of the gradient. The two 8-neighbors of a pixel that are to be
compared are found by rounding off the computed gradient direction to one of 0, 45, 90 or 135
degrees.

4. Thresholding by gradient magnitude with hysterisis. Two thresholds, an upper and a lower
threshold, are defined for edge detection and edge following, respectively, where the upper
threshold is two or three times the lower threshold. The edge detection is based on the upper
threshold. However, once started a contour segment may be followed through pixels whose
gradient magnitude exceeds the lower threshold.

5. A set of edge maps over a range of scales can be produced by varying . Fine-to-coarse feature
synthesis is used to combine edges at different scales into a single edge map.
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Edge Detection Examples using demos in the Matlab Image Processing Toolbox.

Edge detection on Vertigo image using Sobel kernel with a threshold: 0.38224

Criginal Yertiga Image

Select an Image;

Edoe Detection Method:

The threshald iz 035224 .

Threshald:

Edge detection on Vertigo image using Prewitt kernel with a threshold: 0.37413 and Roberts kernel
with a threshold: 0.57818:

Edge Map

© Hiiseyin Abut, February 2006



136

Edge detection on Vertigo image using LoG with sigma: 2 and a threshold: 0.02509, also with

sigma: 4 and a threshold: 0.42188
Edge Map Edge Map

Edge detection on Vertigo image using Canny with sigma: 2 and a threshold: 0.60938 and also with
sigma: 4 and a threshold: 0.53125

Edge Map

Similar procedures will be tested with other images. Also Identifying Round Objects will be an
integrated application of edge detection, Measuring Angle of Intersection.
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