Chapter 5: z- Transform and Applications

z-Transform is the discrete-time equivalent of the Laplace transform for continuous signals.
It is seen as a generalization of the DTFT that is applicable to a very large class of signals observed in
diverse engineering applications.

5.1 z-Transform and its Inverse
z-transform: Itis a transformation that maps Discrete-time (DT) signal x[n] into a function of the complex
variable z,namely:

X(2) = §¥x[n]z- " (51.)

n=-
The domain of X (z) or Region of Convergence (ROC) is the set of all zin the complex plane such that the
series converges absolutely, i.e.,

Dom(X) ={zl C: &|Xnjz| " <¥ (5.2)
n=- ¥

Both X(z) and ROC is needed to specify an z-transform.

ROC depends on | z|, if zT ROC then |z|, if zz'" T ROC for any angle f.

Within ROC, X (2) is an analytic function of the complex variable z, X(z) is a smooth function and
derivative exists.

Example 5.1 Find the z-transforms of

i " ns3 i- n
1(1/2" n30 and yr] =1 (1/2" n<0

X[n] =i
T 0 n<o , 0 n3 0
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Both sequences have the same z-transform. The difference is in the two different regions of convergence for
(5.1).

For X (2) the transform will exist if |%z'1|

1 . .
<lor|zp 5; outside the circle.

For Y(2) the transform will existif |2z| <1lor |z |<%; inside the circle.
Appropriate portions of z-plane are called the ROCs for X(z) and Y(z), respectively.

Example 5.2 Find the z-transform of
1 3" n<o0
N ={@/3" n=024,-
L@w2)" n=135
-1 ¥ ¥
X(2= &a3"z"+ a@Wy"z"+ a@wa".z"

n=-¥ n=0, even n=0, odd

Let n=-m, n=2m, n=2m+1 in the first, second, and third sums, respectively,
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X(2) has poles at z :{3,%,- %% > The pole at z =3 corresponds to the only anti-causal pole and the
other four are causal poles in the ROC of 1/2<|zk 3.
Inverse z-transform: Let X(2) with an ROC A , be the z-transform a discrete-time signal x[n] then the

inverse transform is defined by:
1 i
X[N] =——¢ X (2).z" 'dz (5.3)
i2p

where C is any closed counter-clockwise contour around z =0 within A , . This integral is evaluated in

calculus using the residue theorem. However, this may not be necessary in many cases through power-
series expansion. In particular, when X(2) is a rational function:
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Example 5.3 Find the inverse z-transform of

z
X(2) = : |z[>0.1
(2) 01 | z|

Power series expansion in powers of z'*:
z

z- 01

Note that:

x01=1 X1=0.1 x2]=(0.D% x3]=(0.0°3

which is simply:

x[n] =(0.1)".u[n]

Example 5.4 Find the inverse z-transform of

1
z2°-72°+z- —

X(2) = | z>1/2

B 22,1, 1
4~ 27 16

=1+0.1z'+(01.z1)%+(0.1z )3 +-..

(5.4)

Since the numerator and the denominator have the same power N =3, we write X(z) as the sum of a

constant and a remainder form:

1241, 1z(z+2)
X2 =1+ —1 T e
28- =722 +>z- — (z- 2)%(z- ~)
4 2 16 2 4

The bracketed term has a partial fraction expansion:
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From a standard z-transform tables we find the inverse transform terms as:

[ =d[n] - 9(%) " u[n] + 5n(%) " un] + 9(%) " uln]

X(2) =1+ 7

Verification by Matlab:
% Using residue function we locate poles p(i), zeros z(i)

% and multiplicative factors k of an X(z) function. % Plot unit-step response
b=[1,-1,1,-1/16]; time=0:0.1:10;
a=[1,-5/4,1/2,-1/16]; response=step(b,a,time);
pzmap(b,a); plot(time,response,'rQ'); axis;
[r,p,k]=residue(b,a)
figure;

Results: r =-2.0000, 1.2500, 2.2500 p = 0.5000, 0.5000, 0.2500 k=1
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5.2 Fundamental Properties of z-Transform and Examples

z-Transform tables are very similar to those of Laplace and DTFT transforms and it has several important
properties just like them. The critical ones have been tabulated in Table 5.1.

TABLE 5.1 PROPERTIES OF z-TRANSFORM

1. Linearity Ax,[n] + B.x,[n] AX,(z)+B.X,(2
X[+ N] 2M[X(2)- & {ml.z "]
2. Time-Shift (Delay) =
x{n- N] Z"[X(@)- &xml.z"]
m=- N
3. Frequency Scaling | a".x[n] X(at.z)
n.x[n] - zdiX(z)
4. Multiplication by n ;
k -z X(zZ
n*.x{n] ( dz) (2)
5. Convolution x{n]* h[n] X(2).H(2)
In addition, initial and final values are very useful concepts in explaining systems behavior.
Initial Value: X[0] = "@Ql X(2) (5.5a)
N
- . . _ _1 — . o _ _ - - —
Final Value: Izlgwl[(l z ) X(2)] ’\|IIQ1¥ r]z;lo(x[n] x[n- 1]) I!llg)n¥ X[N] =X ¥] (5.5b)

Example 5.5 Find the initial and final values of:
X(2) = z°-3/47*+2z-5/4 _7° 1- 3/4.z'+2z%-5/4.73
(z- O)(z- 1/3)(Z%-1/2.z+]) z* (1- ZYH)(A- 1/3z2YH)(1- /2271 + Z°?)
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} -1 -2 -3
1- 3/4.2"+ 2z 5/4.z )= Iim(l).lz 0

- I
o= X(Z)_%Qé(z“)'((l- zDA- 1/32Y(1- /22 +72) ¥ 7z

- B} 3_ 2 i
%] =im[(L- )X (2)] =lim 22X (2) = lim 21 % - 8/42 +22- 5/4
z®1 w®1l 7 w®1 7 (Z- 1)(2_ 1/3)(22 _ 1/2.Z+1)

~ lim z°-3/4z2°+2z-5/4 1-3/4+2- 5/4_,
201 7(z- 1/3)(z? - 1/2.z+1) 1.2/3.(2- 1/2)

Matlab Analysis:
% Matlab Analysis of Example 5.5
% Pole-zero map
b=[1,-3/4,2,-5/4];
a=[1,-11/6,3,-3/2,1/3];
pzmap(b,a);
[r,p,K]=residue(b,a)
figure;
% Nyquist Analysis
nyquist(b,a)
figure
% Plot impulse response
time=0:1:40;
response=impulse(b,a,time);
plot(time,response,'ro’);
axis;
[0.0615 - 0.4350i, 0.0615 + 0.4350i, 0.4385 + 0.8195i, 0.4385-0.8195i]
[0.6030 + 1.3114i, 0.6030 - 1.3114i, 0.3137 + 0.2482i, 0.3137 - 0.2482i]
[]
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Example 5.6 Find the z-transform and ROC of
x[n] = cos(wn).u[n] = %ej%”.u[ n] + %e’ Men yin]

1¥ . 1% . 1 1 1 1
X(z)==8e""z"+=- ez == S '
( ) 2 n=0 2 n=0 21- eJWC.Z_l 21- e .Z_1
_ 1- z'.cosw,
1- 2.z .cosw +7?

Since denominator terms above must satisfy: | z|>| e |z|e M |1, ROC: |z|>1.

Example 5.7 Find the response from the system (convolution) of:

x[n]={1,- 2a,a*} and

h[n] ={1,- 2a,a%,a%,a%}
and ais a complex quantity.

X(2)=1- 2az'+a%z%?=(- az??

H(z)=1+az'+a’z?+az°+a*.z* =ﬁ

1- az

yinj=x[n]*h[n P Y(2)=X(@2)Y(2)=01- az).(1- a’.z°% =1-az'-a’z°+a’z°
The inverse z-transform yields the response in discrete time-domain:

y[n] ={1,- a,0,0,0,- a°,a°}

Example 5.8 Similar to Example 5.7 use z-transform to find the convolution of two sequences:
h[n]={1,2,0,- 13} and x[n] ={1,3-1-2
H(z2)=1+2z'- 23+ 7% and X(2) =1+3z'-z%- 277

Y(2)=X(2H(2)=1+521+52%-52°%-62*+42°+2°- 277
yin ={155-5-6,41-2
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5.3 DTFT and z-Transform Relationship
z-Transform is more general than the DTFT with z=r.e!" with possibility of adjusting r so that the series:
¥ ¥ :
Z{Xn]}= axn].z’"= axnl.r ".e ™ =DTFT{x[n].r "} (5.6)
n=-¥% ¥

n=-
converges.

Example 5.9 Consider x[n] =2".u[n], DTFT does NOT exist since 2" grows unboundedly as n® ¥. But the
series in (5.6) converges provided:

| 2.z 1 k1, which stands for a ROC of | z]> 2.

¥ ¥
X(2)= 42"z = d @z =
- n=0 n=0 1- 27271
If r =1then z=e™1 ROC and
. ¥ .
X(Ee")= & xnl.e ™ =DTFT{Nn]} (5.7)
n=-¥

Hence, in many cases, DTFT uses either X(e™) or simply X (w).

5.3 Rational z-Transform
X (2) is arational in zor (z'1) if we can write it as:

N(z) bg+bz+b,z %+ +byz

X(2) = N

= > (5.8)
D(z) a,+az+a,z?+--+ayz
or similarly in z™2.
Rational z-transform plays an important role in DSP, in particular, in studying IR filters.
Pole-zero characterizations are critical in determining realizable and stable systems.

Inversion by means of partial fraction expansion is a practical procedure for causal systems.
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