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4. SCALAR LOSSY COMPRESSION METHODS

Uniform Quantization and Coding

General idea: Code highly probable symbols into short binary sequences without regard to their
statistical, temporal, or spatial behavior. They are also known as scalar quantizer with dimension

k =1.

Any real number X can be rounded off to the nearest integer say:

g(x) = round (x) 4.2)
We map the real-line R (continuous space) into a discrete space in terms of “cells” S
(bins, regions, code boundaries, etc.)

S

1.1 N . .
= —E,I +§] and y,=i=%; forallintegersi. (4.2)

If the output levels are spaced equally then the quantizer is a uniform quantizer and it is the
simplest one and realized by A/D converters. This is commonly used in all data

acquisition tasks.
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Resulting quantizing error (noise, distortion):
e=q(X)—x or q(xX)=x+e¢ 4.3)
This description implies the famous additive noise channel model:
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Tn {+ In = qlxy)

Quantizer
e Quantizing distortion & = 0 is desired.
e Unlike Sampling or A/D, quantization operation is lossy.

MSE Distortion and SNR Computation for a uniform quantizer:
Assume that our signal is uniformly distributed in the interval [-A/2,+A/2] and there are

N = 2R cells, resulting in cells with a width: A= A/N and the output values are in middle of
cells. It has been shown in the literature that the MSE is given by

A
—+(i+1)A
5 i)

[LEN

D@ =2 [Ix-a(9[* dx=

p

N-1A/2 3 2
1 AN A
2 lyPdy=soN = (4.4)
—§+iA 1=0-a/2
which is known in the business as 1/12 law or Bennett’s uniform quantizer distortion law. It has
been also shown that (5.4) holds true for any signal distribution if the number of quantization
levels is very large.
Entropy for this uniform distribution is simply:

H(g) =logN (4.5)
For a uniform quantizer with N levels, we need an encoding rate of: R =1log,(N) bits/symbol. For

our signal with range A and a step-size: A= A/N then (4.4) yields a signal-to-distortion (noise)
ratio (in decibels):
2

X
E{(a(X)-X)*}
which is known as the “6 dB per bit rule”, where SNR for uniform quantization increases 6 dB for
each one bit increase on rate R. Here E{o} corresponds to the averaging or expectation, o3 stands
for the variance (average power) of the signal. c is a signal dependent loading factor, in telecom

industry, there is a rule of 4-sigma loading, where X, = 4.0, which results at:

2 2R
SNRz =10.10g,, (%) =6.02R-7.27 dB (4.7)

~Cc+20.R.log,p,2~Cc+6.R dB (4.6)

max
It is very important to note that (4.7) is true for only 4-sigma loading case but (4.6) is true for all
uniform quantizers:

PSNR Computation for Image Coder:
peak
MSE
In many gray scale (monochrome) imaging applications peak = 256, 8-bit per pixel per color is
used.

Example 4.1: Using VcDemo explore uniform quantization of imagery with and without channel
errors.
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Pulse Code Modulation (PCM) Infrastructure :

PCM systems constitute the backbone of the existing public telecommunication hierarchy
throughout the world. There are basically two basic infrastructures: the North American and
Japanese networks based on an aggregate transmission rates at integer multiples of 1.544 MB/s
over T-1 lines and the CCITT networks based on integer multiples of 2.048 MB/s E-1 lines. This
configuration is commonly known as the “plain old telephone service (POTS” in the
telecommunication industry.

Signal Inputs

S Ch. 1 —»|
.4+ _.--="1 Data Rate: 1.544 MB/s
S Ch.2 —»] 1
S Ch. 3 —— T-1
| Channel
Data Rate: 6.176 MB/s
S Ch. 24— A
i
T-1Ch#1 >
T-3Ch 1—p]
T-1Ch# 2 ———p T-2 ! —>
T-1Ch#3 ——  Channel P T4
———3| Channel
T-1Ch# 4 T-3Ché6 >
i
VN
S|
T-2Ch# 1 > Data Rate: 259.4 MB/s
—>
! —> T-3
1 —>
! — 3| Channel
—> To T-5 Channel
T-2 Ch# 7 —— \
‘\

Data Rate: 43.2 MB/s
North American and Japanese TDM hierarchy for digital plain old telephone service (POTS).

1. First stage in this architecture is the T-1 Carrier System, where a set of 24 voice-grade

signals sampled at 8,000 samples per second.

Sampling resolution of 8-bits per sample.

This corresponds to a data rate of 64,000 b/s is time-multiplexed.

4. Overall bandwidth and the associated bit rate is 1.544 MB/s, where 1.536 MB/s is for data
from 24 voice channels and the remaining 8.0 kb/s is for framing and synchronization.

5. T-1 information is transmitted over nominally 22 - 25 gauge copper wire pair and it is
mostly used in the terrestrial networks.

6. The international networks, however, has a similar infrastructure where the building block
is the 32-Channel E-1 Carrier system.

7. Here 30 voice grade channels are TDM multiplexed together with two control, protocol,
and synchronization channels.

8. Each with a bit rate of 64 kb/s results in an overall bit rate of 2.048 MB/s and the
bandwidth requirement is appropriately increased to 2.048 MHz.

wn
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At present, the TDM systems have been generally replaced by Time-Division Multiple Access
(TDMA), especially, in communication satellites and cellular communication systems. Since not
every channel is always “on-line” the channel capabilities are fully utilized. In order to keep the
overall system almost always “FULL,” neat procedures are developed to accept data from higher
than 24 (or 30 in CCITT systems) according to some statistics-based switching operations. This is
done at the expense of adding a buffer to the system. Buffer size plays a key role since a large
buffer could be unacceptably costly, whereas, a very small one can easily overflow. Independent
of the size, when a demand is not met due to overflow, it is not a good business practice in these
days of stiff competition and dropping service charges.

End-to-End Single Channel PCM System: If we take only one of these voice grade input
signals and go through the complete process of communicating over a PCM system, this is called
an end-to-end single channel PCM configuration in the engineering jargon. A general block
diagram for a voice grade speech communication over telephone lines is shown below.

1. First step is to bandlimit the analog signal with a low-pass filter of B=4,000 Hz.

2. This filter is an analog anti-aliasing filter with a cut-off frequency of 3300 Hz and the

speech is suppressed to a minimum of 35 dB at 4.0 kHz.
3. Next step is to obtain samples of this baseband signal at 8,000 samples/s.

PCM Transmitter
Speech
Input Analog Sample 8-bit Binary
—3 LPF4.0 & Hold Quantizer Encoder
kHz / / ‘
\/ J J, Regenerative
_ R Yd Repeater
LP Analog Signal - Fiat top PAM Signal 8-bit PCMData o' SoTol®o

i 3 Telgphone
N Lines

Regenerative
Repeater

Recelve{ S;:eech Reconstruction Binary Receiver
{Du pu LP Filter Decoder Rege_nergtlve
Circuit

End-to-end single channel PCM block diagram.

Non-Uniform Quantizers: The uniform quantizer used in the previous section has exactly the
same step-size for each level and it is used in applications where data compression is not the
primary motive. In most public and secure communication systems, we deal with signals, which
exhibit non-uniform amplitude distribution. Particularly, smaller amplitudes dominate the
transmitted sample sequence in traditional communication, whereas large amplitudes are very rare.
In other words, quantizer steps at the center of the staircase are heavily used and the tail levels are
very infrequent. To save bandwidth one idea is to truncate these large values since they are very
infrequent. However, we pay the price of loosing details in video or richness in sound. Instead, we
attempt to exploit this infrequency for the purposes of improved SNR or reduced bit rate by
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assigning non-uniform step sizes. This is due to the fact that there will be more steps in the center
and the range of the error signal will be smaller. This is demonstrated in the figure below.

A Ay —— = j— A,
| |
|

) | ot g0, ! e ) S

"y Xy My Xg My Xq NigXgq Mg Xg INg Xg M, Xg g

Illustration of a 3-bit non-uniform quantization.
e Step sizes are variable.
e They are more closely spaced for samples which are frequent.
e Very infrequent samples are bundled together or even some samples neglected totally.
There are three well known classes of quantizers use this approach:

(1) Lloyd (II)-Max non-linear quantizers, where each step-size optimized according to the
underlying statistical distribution. For instance, an exponential distribution is assumed for
the intensity levels of pixels in an image frame.

(2) Generalized Lloyd I type quantizers, where the levels are matched to the statistics of large
training databases. These quantizers are usually multi-dimensional and they form the basis
for Vector Quantization (VQ) in modern communication systems.

(3) Obtain optimal quantizer levels is to pass the signal through a companding network, whose
output is a uniformly distributed signal as shown below.

Uniformq 4y

i

Nonuniform

A Compandor for mapping non-uniform input levels to uniform ones. (Reprint from Lathi’s text.)

As it is clear from above, the input signal falling into regions with non-uniform lengths Am , which
are increasing as the amplitude increases, are mapped into uniform regions with range Ay. The
system, which does this type of transformation, is called a compandor. It should be expected that
the precisely the opposite procedure will need to be performed in the receiver by an expandor.

This approach has been the norm in the existing telecommunication infrastructure. According to
long-term studies on telephone speech samples, it observed that speech samples exhibit roughly an
exponential distribution, where samples with small amplitude occur exponentially more often than
the larger ones. To exploit this exponential character, input speech is processed by a logarithmic
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network and its outputs are expected to be significantly more uniform. Next, we pass these
logarithmically compressed signals by a uniform quantizer of the previous section. In the receiver,
however, samples are expanded by an exponential network to cancel out the compression. This
process is called Companding. There are two logarithmic laws used for companding voice/audio
grade signals, namely, the A-Law for the international circuits and the u—Law for the North

American and Japanese systems. Input-output characteristics of these two laws are shown below.

Case 1: CCITT Law with A=87.6: If the input signal is X(t) with a peak amplitude level my the output
signal is given by:

A O it [x(t)/mp|<1/ A
) = 1+log, A" mp (4.97)
y(t) = 1+loge (A /mp|. :
Sgn(x(t)).{ L+ 1o, A }ooif UA<x(t)/mp|<1
Case 2: u— Lawwith p=255:
I 1+pudx(t)/
J(t) = Sqn(x(t). Qe LI X mel] [x(t)/ mp| <1 (4.98)

log,(1+ )
In either case, the signal-to-quantizing distortion ratio: S, /N, is nearly constant over most voice-
grade input signal with a power range of 40 dB. For instance, the output SDR for the u— Lawcan
be approximated by:
2 2
So 3 s
Ng  [loge (L+w)] X2 (t)
where L is the number of quantizer levels and =255 is uniformly used in practice. Similar to
non-compressed case, this result can be rewritten by:

(4.10)

S0 _3k2?  where k= L1
Ng [loge (L+w)]?
or equivalently,
SNRys =(Sy/ Nq)‘dB ~b6n+a where a =10log,, (3k) (4.11)

The plot of this curve foru =255 together with that of a PCM system without companding, i.e.,
u=0 is shown below.

Relative signal power m?(¢) in dB —>

Performance of a companded and uniform quantizers. (Reprint from Lathi’s text, courtesy of Oxford Press)
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SNR for Logarithmic Quantizers

A-Law:

Case 1: || —0; small input Case 2: |X|/ Xpa —1;large input

SNR, — SNR.... - + 20105, G, SNR, = 6.02R +4.77 — 201og,, (1+ In A)
=6.02R-10 dB

A

Where GC = m = 16
+1n

M -Law:
Case 11 4 Xmax| >> Ximax

SNR, =6.02R +4.77 - 20l0g,, (In(1) + #) =6.02R -10.1 for u =255
Case 2: |X|— 0 ; small input

SNR,, = SNRypiform + 2010g1 G

y7;
where G, = Inds 22

Example 4.2: Let us examine the characteristics of £/ -Law quantization.

% Case 1: mhu=1 (almost O=uniform PCM); N=8, 64, 256
t=1:200; a=randn(1,200); [sgnr81,a_quan,code]=mula_pcm(a,8,1);
[Y,1]=sort(a); figure;plot(Y,a_quan(l));
[sgnr641,a_quan,code]=mula_pcm(a,64,1);

[Y,1]=sort(a); figure;plot(Y,a_quan(l));
[sgnr256,a_gquan,code]=mula_pcm(a,256,1);

[Y,1]=sort(a); figure;plot(Y,a_quan(l));

disp ('sqnr8_1="), disp(sqnr81); disp ('sqnré4_1="), disp(sqnr641);
disp (‘'sqnr256_1="), disp(sqnr256)

% Plots for quantizer levels, input & error signal

figure;

error8l=a-a_quan; subplot(4,1,1); plot(t,a); subplot(4,1,2); plot(t,error81);
error641=a-a_quan; subplot(4,1,3); plot(t,error641);

error2561=a-a_quan; subplot(4,1,4); plot(t,error2561);

% Case 2: mhu=255 (Industry Standard); N=8,64,256

t=1:200; a=randn(1,200); [sgnr8255,a_quan,code]=mula_pcm(a,8,255);
[Y,1]=sort(a); figure;plot(Y,a_quan(l));
[sgnr64255,a_quan,code]=mula_pcm(a,64,255);

[Y,1]=sort(a); figure;plot(Y,a_quan(l));
[sgnr256,a_gquan,code]=mula_pcm(a,256,255);

[Y,1]=sort(a); figure;plot(Y,a_quan(l));

disp (‘'sqnr8_255="), disp(sqnr81); disp ('sqnr64_255="), disp(sqnr641)
disp (‘'sqnr256_255="), disp(sqnr256)
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% Plots for quantizer levels, input & error signal

figure;

error8255=a-a_quan; subplot(4,1,1); plot(t,a); subplot(4,1,2); plot(t,error8255);
error64255=a-a_quan; subplot(4,1,3); plot(t,error64255);
error256255=a-a_quan; subplot(4,1,4); plot(t,error256255);
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sqnr8_1=15.5507; sgnr64_1=33.7532; sgnr256_1=45.9716
sqnr8_255=15.5507; sqnré4_255=33.7532; sqnr256_255=37.7977

5 T T T T T T T T T
0 P e o AP A e T Mg
_5 | | | | | | 1 1 1
0 20 40 B0 8O0 100 120 140 160 180 200
I:I1 1 1 1 1 1 1 T T T
O NVWWMMV&VA\M’MWW
_D-] | | | | | | 1 1 1
0 20 40 GO0 B0 100 120 140 160 180 200
I:I1 T T T T T T T T T
0 WVW“V\“WW%V/W'M“W
_D-] | | | | | | 1 1 1
0 20 40 B0 80 100 120 140 160 180 200
I:I1 T T T T T T T T T
0 WMWNWWWWHW
_D-] | | | | | | 1 1 1
0 20 40 GO0 B0 100 120 140 160 180 200

Example 4.3: Using a well-known website for http://www.its.bldrdoc.gov/audio/examples.php let
us hear 16-bit Uniform PCM and 8-bit £¢-Law 64,000 bits per second speech samples.

Adaptive Quantizers

Uniform and non-uniform quantizers with fixed quantization levels can overflow and underflow
easily if the input signal levels change over time. In other words, a large number of higher index
levels are not used at all for low amplitude signals. In the case of signals with large amplitude
ranges, the lower indices are never transmitted.

The remedy to this situation is to adapt the quantizer levels to the dynamics of the input signal.

Adaptation could be in two ways:

1. Backward adaptation: Quantize the current signal; estimate the levels for the next iteration;
quantize the new signal with the estimate from the previous iteration.

2. Forward adaptation: Buffer the signal; estimate the levels and quantize with a small delay.
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Encoder
- ; :
x(n) o Fixed Quantizer : (= ) % (1) Fived Quantizer J:E‘T}
Select | Salact J
] 2 Drecodder M
Step Size Multiplier for Jayant’s one-bit Memory Feedback Adaptive Quantizer
Adaptation (multiply or divide) Values
Previous Output Levels 2.Bit 3.Bit 4 Bit
L1 0.60 0.85 0.8
L2 2.20 1.00 0.08
L3 1.00 0.80
L4 1.50 0.80
L5 1.20
L6 1.60
L7 2.00
L8 2.40

Performance of AQF by Jayant:

SNR (dB) Values for 3-bit speech quantization
with Jayant adaptation

Non-Uniform Quantizers | Non-Adaptive Adaptive
M -Law 9.5 X
Gaussian Optimized 7.3 15.0
Laplacian Optimized 9.9 13.3
Uniform Quantizers

Gaussian Optimized 6.7 14.7
Laplacian Optimized 7.4 13.4
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Differential Quantizers (DPCM and DM)

Digitized samples of signals occurring in nature, i.e, speech, imagery, radar, sonar, telemetry, and
others, usually have strong correlation. In other words, subsequent samples of speech are highly
correlated, so are the adjacent pixels of an image frame. This correlation implies redundancy,
which can be reduced by encoding difference between subsequent samples or adjacent pixels.
Quantizers of this class are called differential coders and they perform typically 6 dB better than
their non-differential counterparts.

There are two fundamental system groups in this class: Differential Pulse Code Modulation
(DPCM) due to Cutler and Delta Modulation (DM) developed deJager, van de Weg, Zetterberg,
O'Neal and Abate. As in other coders, there are non-adaptive and adaptive versions of each.

Key features of a DPCM system are:
e Quantizer. It is an n-bit encoder as in PCM.
e Linear Predictor predicts X(n) an estimate of the current sample x(n)

N
X(n)=>h;-X(n-j) (4.12)
j=1
Encoder
X(1) 4 d® _ 1 () = g (d (%))
2. Qluantizer * To Codewaord Mapping
- and Channel
.{'(H) Predictor
h

W=l x(n)
"6 - )
From _
Channel 4 F're;i?lctur B
x(n)
Decoder
. The predictor can be interpreted as a linear filter (finite impulse response, FIR) and

represented by its impulse response in the discrete-time or digital frequency-domains, where N is
the order of prediction and hB; are weights of individual taps.
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x(n) Predigtor hin)
Dl @y fom e e e

s Delay = Delay

+ —— % (1)

Note: Delay operation is simply delaying the current value of the signal for one clock cycle T:

X(n—-1) = D(x(n)) (4.13)
e Differentiator to find the difference between the input at time n and its estimate:
d(n) = x(n) — X(n) (4.14)
e The decoder has a replica of the predictor and its output is simply
X(n) =u(n) + X(n) (4.15)
e General N"—order predictor output (filter response) can be modeled as:
N N
izZaiin_i :Zhiin—i (4.16)
i=1 i=1

Optimum Predictors in DPCM:
Let us define the variance (power) of the difference sequence in (4.14) by:

N
2 o (Y12 s 12
og = E{[x(n) = K()]“} = E{[xq - > ai%,_i1°} (4.17)
i=1
Optimum  predictor values or the multipliers in the transversal filter model
Popt = Hopt ={h1,h2,---,hy }can be found by minimizing this prediction variance ag using the
extremum point analysis on real data not including the quantizer.

—=—FK{[x, _Zaixn—i] }=—2E{[x, _zaixn—i]xn—l}z 0
0 S i1 i—1
So2 5 N N
d 2
—=—E{[xn — > aiXn_; ==2E{[xn — > aiXp_i|Xn_o}=0
5&2 §a2 {[ n |§1 1*n |] } {[ n |§1 1n |] n 2} (4.18)
502 S N N
—dz—E{[Xn _zaixn—i]z}: —2E{[x _zaixn—i]xn—N}z 0
day day i—1 i—1

After taking the expectations we can write these equations in terms of the autocorrelation function
of xp:
Ryx (k) = E{XnXn_x } (4.20)
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N
zai Rxx (i —1) = Rxx (1)
i=1

N
z aj Rxx (i-2)= Rxx (2)
i=1

(4.21)
N =
D8Ry (i—N) = Ry (N)
i=1
or equivalently in matrix form:
RA=P (4.22)
where
Ryx (0) Ryx (@) Ryx(2) Ry (N _1)_ | & | | Ryx @) ]
Ryx (1) Rux (0)  Ryx (@) R (N-2) ap Ry (2)
R= Rxx.(z) Rxx (1) .Rxx (O) Rxx('_\l _3) A=| as P= Rxx (3)
| Rix(N=1) Ryx(N-2) Ry (N-3) - Rux (0) EXN | Ryx (N) |

e These N-equations for optimum predictor or filter coefficients are called "Normal Equations,"
which are also known as Wiener-Hopf or Yule-Walker equations. They are solved by either a
matrix inversion process or Levinson-Durbin type recursive algorithms or their special forms
including LaRoux-Geugen integer algorithm are used in speech coding, especially in the
framework of LPC based codecs of the mobile phone technology. (Solution will be discussed
in Chapter 9.) Let us now compute the predictors for the scalar DPCM system at hand.

Special case for N=1 (Single tap predictor):
h1,opt = Ry @/ Ry (0) (4.23)
R, (0) = E{x(n).x(n)} and R, (D = E{x(n).x(n-1)} (4.24)
For speech and image compression single-tap prediction coefficient is in the range: (0.75 - .90)

The impact of the prediction on speech and imagery is also interpreted as “whitening” and de-
correlating the signal as it can be seen from the figure below where the word “test” and its residual
after being passed through a third order (N=3) predictor filter as implemented as a transversal
filter of order 3.

Example 4.5:

Consider a segment of the word “Test” for about 0.5 seconds long shown below. The residual
output from a third order predictor is also shown resulting in a significant reduction in dynamic
range.
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Word:”Test”
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Quantitatively we measure the performance of prediction from the Singal-to-prediction-error ratio
as defined by:

M M
SPERgs = > %2 /> (% — %i)? (4.25)
i=1 =l
Even simplest first order DPCM system is superior to PCM by a minimum of 6.0 dB. Higher order
prediction yields better SNR. In the table below, we list the performance of DPCM system with

different predictors and quantizers. Also we show the original signal and the reconstructed signal
from a third order predictor and an 8-level (3-bits/symbol) quantizer.

Performance of DPCM system with different predictors and quantizers

Quantizer Predictor Order SNR (dB) SPER (dB)
Four-level None 243 0

1 3.37 2.65

2 8.35 59

3 8.74 6.1
Eight-level None 3.65 0

1 3.87 2.74

2 9.81 6.37

3 10.16 6.71

3 ] 1 1 1 1 | 1 1 X i | ' |

1 1
BPCM Output

7 ’h Word:”Test” | o il and Quantized
1] ; l B I m

0 ]['::|Iilli'l::L !|| ||||| I.I l‘llil;ll| 'I'IIJ MACHL TNV Il l' - 0 "

<] - ( [ s ==

| -2

T T T T T T T
-3 T T I | T T 1 T 500 1000 1500 2000 2500 3000 3500 4000
500 1000 1500 2000 2500 3000 3500 4000

Performance of DPCM is even more pronounced in the case of image compression and more than
17.5 dB improvement has been reported in the literature.
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Example 4.6: Let us explore the performance of DPCM for a few different cases using VcDemo.
The original image called “Mandrill” and the out of an 1-tap DPCM system is shown below,
which clearly exhibits double-sided exponential distribution (Laplacian).

Onzinal

[

- B B % E ¥ £

L ErEtEEREE

RN
DPCM CODING RESULTS:

Variance of prediction error : 351.7 Prediction gain : 3.6db
Coded bitrate 2.0 (bpp)  Est. entropy-coded bitrate : 1.7 (bpp)
Mean square error :60.8

Signal-to-noise ratio :13.1 (dB); PSNR :30.3 (dB)

DPCM CODING RESULTS:

Variance of prediction error : 351.7 Prediction gain . 3.6db
Coded bitrate 5.0 (bpp)  Est. entropy-coded bitrate : 4.1 (bpp)
Mean square error 217

Signal-to-noise ratio : 28.8 (dB); PSNR :45.9 (dB)
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There are two issues with DPCM systems:

1.

2.

Delay of N-units since the sample at time n needs to wait an estimation process of order N to
finish.

Error propagation. If there is a single bit error in the channel, this error will result in error for
all subsequent signals due to the feedback loop. There are ways to control this propagation
either by means of a resetting procedure or via exponentially decaying memory content. Below
is an example for effects of bit errors in image compression.

Delta Modulation (DM)
Very simple
ONE-BIT Encoder
ONE-TAP Feedback (predictor) differential coding system with an important difference:
Sampling rate of DM is a several times higher than the Nyquist rate to compensate it is

simplicity.

The oversampling factor is usually 4-6 times the Nyquist rate.

Only one bit differences are transmitted as shown in the following block diagram.
The channel symbols are received simply as b(n) =+1.

Feedback predictor is identical to the encoder side.

To Codeword Mapping
Encoder and Channel _ _-B0=11

-

x(n) 4 O IEET: P
Cluantizer Filter >
=1 yia)
X1
( ) One-tap One-tap
Fredictor Predictor

Decoder

Since there is only a one-bit quantizer the coded signal may not be able to follow the input if
it is rapidly changing. This is called "Slope Overload Noise" in the DM jargon. It is very
critical since the coder may not be able to follow the input at all.

If the signal is very slowly varying from sample-to-sample, then quantizer makes the same
amount of error as if it were changing rapidly. This is called "Granular Noise™ and it is equally
detrimental.

GRANULAR NOISE

L s R TS T S B B R I e T S R R R

lllustration of Granular and Slope overload Noise in Linear DM and Adaptive DM.
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Remedy: Variable step-size or adaptation of the quantizer according to some pre-defined
adaptation logic. There are many examples to that. Performance of adaptive, linear or non-linear
DM systems is very much dependent on the sampling rate factor.

Example 4.7: Let us explore the performance of DM for sinusoidal signal and speech sample
using a simple Delta Modulation Demo package, which can be found in the web.

D (red:input signal, green:decoder output, blue: LPF output)
0.5

amplitude
)

amplitude
)
i

amplitude

40 A0
index, n

DM (red:input =ignal, green:decoder output, blue: LPF output)

amplitude

arnplitude
=
|

arnplitude

index, n , 1EI4
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Performance Comparison of Advanced Pulse Modulation Systems

Finally, we illustrate below a comparative plot of the three systems used in speech waveforms and
in pixel-domain image compression. Highest performance for comparable rate is obtained in the
DPCM system with a feedback adaptation for its quantizer step-size. The next one is an Adaptive
Delta modulation with a one-bit memory, and the final system is a logarithmically companded
PCM. It is worth noting that the DM and LOG-PCM curves have a crossover point, which is
around 48 kbits/s. This implies that a simple logarithmic PCM will do a better job than the
equivalent DM and no need to worry about the feedback mechanism and the propagation of bit
errors in the latter one.

DPCM-AQB
30|
o 20
=
&
= - DM-AQB
w
1o LOG—-PCM
o) | | | ] 1
o) 10 20 30 40 50 60

BIT RATE (kb/s)

Comparative performance curves for PCM, DPCM and DM systems. (Reprint with permission from
Modern Analog and Digital Communication Systems, Third Edition, B. Lathi, courtesy of Oxford Press)
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APPENDIX: SNR performance of uniform and ££-Law (255) PCM for speech. The figures

below are for 16-level (bits/sample) and 256-level (8-bit) quantizers. Speech Compression based
on Uniform and mhu-law PCM Quantizers

Unifarm PCR (blue:input, green: output, red:encoding error)

a5
«10°
I:I1 T T T T T T
|:| .
_I:I-] 1 1 1 1 1 1
0.4a 1 1.5 2 25 3 34
% 10°
I:I1 T T T T T T
|:| .
_I:I-] 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3 34
«10°
mhu=255 PCh (B:input, G: output, R:error)
348
% 107
D1 T T T T T T
|:| .
_D'] 1 1 1 1 1 1
0.5 1 15 2 25 3 38
x 107
D5 T T T T T T
|:| AM’—M .
_D5 1 1 1 1 1 1
0 0.5 1 15 2 25 3 38
% 10°
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% Uniform and mhu-law PCM compression of speech
% Written by H. Abut: March 2006
% Case 1: mhu=1 (almost O=uniform PCM); N=8,...,256

% Input speech file

[s,fs]=auread('bye441"); %read .au file
% [s,fs]=wavread('bye440'; %read .wav file
t=1:size(s);

N=input('Enter Quantizer size in levels, \n");

pause; sound(s,fs); pause;
[sgnr,a_quan,code]=mula_pcm(s,N,1);

disp (‘Quantizer Size="), disp(N), disp ('sqnr_1="), disp(sqgnr)

% Plots for quantizer, input, output & error signal
error=s-a_quan;

% Lowpass filtering to smooth the output
Sa=Ipf(100, .1, a_quan);

% Plots

subplot(3,1,1), plot(t,s,'0"), title("Uniform PCM (blue:input, green: output, red:encoding error)");
subplot(3,1,2), plot(t,Sa,'g"); subplot(3,1,3), plot(t,error,'r);

pause; Sa= 20 .* Sa; Sound(Sa,fs);

% Case 2: mhu=255 (Industry Standard); N=8,...,256
[sgnr,a_quan,code]=mula_pcm(s,N,255);

disp (‘Quantizer Size="), disp(N), disp (‘'sqnr_255="), disp(sgnr)
pause;

% Plots for quantizer, input, output & error signal

error=s-a_quan;

% Lowpass filtering to smooth the output

Sa=Ipf(100, .1, a_quan);

figure,

subplot(3,1,1), plot(t,s,'b", title('mhu=255 PCM (B:input, G: output, R:error)');
subplot(3,1,2), plot(t,Sa,'g"); subplot(3,1,3), plot(t,error,'r");

% Speech output is scaled up (8 times) due to low-level output from PC audio cards.
Sa= 8 .* Sa; Sound(Sa,fs);
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APPENDIX: SNR performance of a DPCM system for speech. The figures below are for 16-level
(bits/sample) and 256-level (8-bit) quantizers.

amplitude

amplitude

amplitude

amplitude

amplitude

amplitude

DPCM with predictar (red:input, green:decoder output, blue: LPF output)
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MATLAB CODE for Speech Compression Using DPCM:
% Speech compression using DPCM

close all; clear

% signal sampling

fs=1/8000; tn=0:fs:1/25;

% SELECT A SIGNAL TYPE ****#kkdoksshokskkrsk

% Use next lines for sine wave, for an .au file or an .wav file
% s=.5*sin(2*pi*50*tn);

[s,fs]=auread('bye441"); %read .wav file
%|[s,fs]=wavread('bye440"); %read .wav file
sound(s,fs)

%Predictor and encoder-decoder parameters
Ipclen=20;

bitsize=input('bitsize=");

fprintf(\nPlease wait... data length is %i\n’,length(s))
%LPF parameters

tap=100;

cf=.15;

% DPCM with predictor

[Q,b, ai] = dpcm_enco_Ipc(s, Ipclen, bitsize);
[st]=dpcm_deco_Ipc(b, ai, bitsize);
Sa=LPF(tap,cf,st);

figure; subplot(3,1,1):plot(s,'r"); ylabel('amplitude’);

title(DPCM with predictor (red:input, green:decoder output, blue: LPF output)');
subplot(3,1,2):plot(st,'g"); ylabel('amplitude’);

subplot(3,1,3):plot(Sa,'b"); ylabel(‘amplitude"); xlabel('index, n"); grid

pause; sound(s,fs);

pause; Sa=10 .* Sa;

% write speech out to a file called “dpcm_out”
auwrite(Sa,fs,'dpcm_output’)

sound(Sa,fs);

function [Q,b,ai] = dpcm_enco_Ipc(s, Ipclen, bitsize)
% s : input signal; bitsize : encoder bit size
% Q : qunatizer output; b : encoder output

% e = s(i+1) - s(i)

%s = 2"\(-1)*s/max(abs(s));

slen = length(s); e(1) = s(1);

[Q(2),b(1,:)] = pcm_quan_enco(e(1), bitsize);
st(1) = Q(1);
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for i=2:slen
if i<=lpclen
e(i) = s(i)-st(i-1); [Q(1),b(i,:)] = pcm_quan_enco(e(i), bitsize); st(i) = st(i-1) + Q(i);
else
m=0; [a,G]=Ipc(s(i-lpclen:i-1),Ipclen); a = a*G;
m = 1:lpclen;
j=2:Ipclen + 1;
sth = sum(a(j).*st(i-m));  ai(i,:)=a; e(i) = s(i)-sth;
[Q(i),b(i,:)] = pcm_quan_enco(e(i), bitsize); st(i) = sth + Q(i);
end
end
b=b"; b=b(:)";

function [Q,B] = pcm_quan_enco(e,bitsize)
% e : input to quantizer; bitsize : encoder bit size
% Q : qunatazer output; B : encoder output

if bitsize<4
slen = length(e); D = 2"(-bitsize);
switch bitsize
case 3,
for i=1:slen
if e(i) <-3*D
Q(i) =-(7/2)*D; b(i,)=[000];
elseif e(i) >=-3*D & e(i) < -2*D
Q(i) =-(5/2)*D; b(i,) =[0017];
elseif e(i) >=-2*D & e(i) <-D
Q(i) =-(3/2)*D; b(i,;)=[010];
elseife(i) >=-D &e(i) <0
Q(i) =-(1/2)*D; b(i,) =[011];
elseife(i) >=0 & e(i) <D
Q(i) = (1/2)*D; b(i,:)=[100];
elseif e(i) >= D & e(i) < 2*D
Q(i) = (3/2)*D; b(i,;)=[101];
elseif e(i) >= 2*D & e(i) < 3*D
Q(i) = (5/2)*D; b(i,)=[110];
elseif e(i) >=3*D
Q(i) = (7/2)*D; b(i,) =[111];
end
end

case 2,
for i=1:slen
ife(i)<-D
Q(i) =-(3/2)*D; b(i,:) =[00T;
elseife(i) >=-D &e(i) <0
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Q(i) = -(1/2)*D; b(i,

)=[01];

elseife(i) >=0 & e(i) <D

Q(i) = (1/2)*D;
elseif e(i) >=D
Q(i) = (3/2)*D;
end
end

case 1,
for i=1:slen
ife(i)<0

bi,)=[10];

b(i,)=[11];

Qi) =-(1/2)*D; b(i,) = [0 ;

elseif e(i) >=0
Q(i) = (1/2)*D;
end
end
otherwise
fprintf(‘choose a bit size 1,
end
b=b"; B=b(:)’;
else
[bO, b, bb] = dbc(e, bitsize);
end

function [Q] = pcm_deco_qua
% pcm decoder and quantizer;

b(i:)=[11];

2 or 3.\n");

[Q] = bdc(b0,b); B = [b0 b];

n(B,bitsize)
bitsize : encoder bit size

% B : input to decoder from encoder ouput; Q : qunatazer output

if bitsize<4

b=B; slen = length(b); D = 2~(-bitsize);

i=0;
for j=1:bitsize:slen
mask=j:j+bitsize-1;
i =i+1;
switch bitsize
case 3,
if b(mask) ==[000]

Q(i) = -(7/2)*D;
elseif b(mask) ==[001]
Q(i) = -(5/2)*D;

elseif b(mask) ==[01

0]

Q(i) = -(3/2)*D;

elseif b(mask) ==[01

1]

Q(i) = -(1/2)*D;
elseif b(mask) ==[100]

Q(i) = (1/2)*D;

elseif b(mask) ==[101]
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Q(i) = (3/2)*D;
elseif b(mask) ==[110]
Q(i) = (5/2)*D;
elseif b(mask) ==[111]
Q(i) = (7/2)*D;
end

case 2,
if b(mask) ==[00]
Q(i) = -(3/2)*D;
elseif b(mask) == [0 1]
Q(i) = -(1/2)*D;
elseif b(mask) ==[10]
Q(i) = (1/2)*D;
elseif b(mask) ==[11]
Q(i) = (3/2)*D;
end
case 1,
if b(mask) ==[0]
Q(i) = -(1/2)*D;
elseif b(mask) ==[1]
Q(i) = (1/2)*D;
end
otherwise
fprintf(‘choose a bit size 1,2 or 3.\n");
end
end
else
slen=length(B)
i=0;
for j=1:bitsize:slen
i =1+ 1; mask=j:j+bitsize-1; bb = B(mask);
b0 = bb(1); b =bb(2:bitsize); Q(i)=bdc(b0,b);
end
end

function [st]=dpcm_deco_Ipc(b, ai, bitsize)
% b : input to decoder from communication channel;
% st : s_tilda (decoder output to Ipf)
[ij,size_ai] = size(ai); [Q] = pcm_deco_quan(b, bitsize);
st=cumsum(Q(1:size_ai-1)); slen=length(Q);
m=1:size_ai-1;
j=2:size_ai;
for i=size_ai:slen
sth = sum(ai(i,j).*st(i-m)); st(i) = Q(i) + sth;
end

bitsize : encoder bit size
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function Sa=Ipf(tap, cf, Sn)

%LPF lowpass filter

%tap: filter order. cf: cut-off frequency.
%Sa: decoder output.

b=firl(tap,cf); Sa = conv2(Sn,b,'same’);

function [x]=bdc(b0,b);
% Binary-to-Decimal conversion
% b0 : sign bit ( 0 represent + sign, and 1 represents - sign)

%y : binary bits after the binary point; X :aconstant in decimal
%
% Example: x=-0.778; b=4;
% [x]=bdc(b0,b); % returns decimal result.
%
N=length(b); % finds the bit precision, B
y=0;
for i=1:N,
y=y+b(i)*27(-i); % for x >0, converts from binary to decimal
end
x=-b0+y;
ifx<0
[b0O,b,bb]=dbc(x,N+1); %-+1 bit is for sign
y=0;
for i=1:N,
y=y+b(i)*27(-i); % for x < 0, converts from binary to decimal
end
end
x=-b0+y;

function [b0,b,bb]=dbc(x,B);

% Decimal-to-Binary conversion using B+1 bit precision

% x :aconstant in decimal; B : number of the precision bit

% b0 : sign bit ( 0 represent + sign, and 1 represents - sign); b : binary bits after the binary point
% Example: x=-0.778; b=4;

% [b0,b,bb]=dbc(x,B); % returns binary result.
% [b]=qground(b,bb); % rounds off the binary input, returns binary.
% [Y]=bdc(bO,b); % returns decimal result.
B =B-1;
if x>1, error(’ x is not normilized."); end
if x>=0

b0=0; % + sign is assigned.

Z=X;
else

b0=1; % - sign is assigned.

Z=-X;
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end
ifz>=0
for i=1:B,
a=2*z,
if a>=1
b(i)=1; z=a-1,
else
b(i)=0; z=a;
end
end
a=2*z; % finds B+1 th bit in the binary point part
if a>=1
bb=1;
else
bb=0;
end
end
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