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3. LOSSLESS COMPRESSION METHODS 
 
Question: What is the minimum number of bits required to recover perfectly (in a 
noiseless/lossless fashion) a discrete random vector (samples, group of samples, pixels, group of 
pixels)?  

In the Shannon information processing context, this is generally re-phrased as: 

1. What is the minimum rate for zero distortion? 
2. How it is achieved?  
 
First question is answered in 1949 by the Shannon Source Coding Theorem of Chapter 2. (It is 
possible to code and transmit discrete information with arbitrarily small or even no error if the rate 
is not to exceed the entropy.) Huffmann gave an optimal solution to the second one with an 
elegant code design. 

Consider a fixed-rate or a fixed length code: 
Input Letter Codeword 

a0 00 
a1 01 
a2 10 
a3 11 

Can we uniquely decode individual codewords and sequences if we know where the blocks start?  

Yes. If we know where blocks start.  
Example 3.1: “0000011011” decodes as:  “a0a0a32100 ,,,, aaaaa 1a2a3”. 
 
• Where is the compression? There are four letters in the alphabet and four codewords of length 

two. Therefore, no compression is possible. 
• A real world example: ASCII (American Standard Code for Information Interchange): It 

assigns binary numbers to all letters, numbers, punctuation for use in computers and digital 
communication and storage. All letters have same number of binary symbols (7). 

Example 3.2: 
a : 110001 
b : 110010 
c : 110011 
d : 110100 
e : 110101 
... 

 
If there are M letters in the alphabet, we need, at least, R bits,  

MR >2  
• Generally, a fixed rate code gives no lossless compression unless original representation was 

inefficient.  
• Conclusion: To get lossless compression need a variable length code. 
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Example 3.3: Variable rate code: 
Input Letter Codeword 

a0 0 
a1 10 
a2 101 
a3 0101 

This code cannot always be decoded in a noiseless fashion when the code is applied to a sequence 
of inputs. Furthermore, the ambiguity can never be resolved regardless of bits received in the 
future. For instance, 0101 can be decoded as a0 followed by a2 or a3!  

Solution: Uniquely decodable codes: 
Input Letter Codeword 

a0 0 
a1 10 
a2 110 
a3 111 

 
If we know where start, all valid encoded sequences of codewords have unique decoding.  

Prefix-free and Tree-structured Codes 
• Prefix condition: No codeword is a prefix of another codeword. Such a code is said to be 

prefix-free. 
• For prefix-free codes uniquely decodability is guaranteed. 
• Essentially, no loss of generality. 
• Average length of these codes are defined by: 

∑== symbolbitsalapXlAveragel /))(().())}(({)( ααα           (3.1) 

• For any uniquely decodable code, there is a tree-structured code with the same collection of 
codeword lengths and the same average length. 

• Binary prefix-free codes can be depicted as a binary tree: 

 

Tree Formation: We split the root of the tree into two branches to generate left and right siblings 
(children) and associate “1” or “0” depending upon which branch we go. Whenever a child does 
not produce siblings, we prune the tree at that point and this node is called a “terminal node” and 
the branch labels left to right form the codeword. 
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Theorem: Optimum binary prefix-free codes have following properties: 

This theorem provides an iterative design technique for Huffman Codes. Let us now re-visit 
Example 2.1 and design a Huffman code for this case.  
 

Example 2.1 (re-visited): Consider the following 6 source symbols to be used as messages: 
S={A,B,C,D,E,F} with occurrence probabilities {0.25, 0.20, 0.16, 0.15, 0.13, 0.11}.  

Note that sum of probabilities is 1.0 since there are no other messages and possibilities left. One 
way to represent this symbol set is to assign bitL −= 3 long codewords to each symbol as it is 
shown in Table 2.1.  

• 8 possible ways to arrange 3 bits: 000, 001,…, 111. 
• Chose any 6 out of these combinations. 
• Compute the entropy and average length of this coding procedure. 

             symbolbitppSH
k

kk /5309.2)(log.)(
6

1
2 =∑−=

=

• It is easy to see that the difference symbolbitsSHL /4691.05309.20.3)( =−=−  is almost ½ 
bits per symbol away from the theoretical bound H(S). 

• Another scheme is to use a variable-length bit assignment according to some nice rule! As 
also shown un the table.  

 
Huffman Code Design Stage:  

• Organize the symbols in a descending order (probability-wise), if any two symbol has the 
same probability assume a tie-breaker rule.  

• Consider the least probable two entries (F, E): Assign “1” to more probable, “0” to the 
other and combine these two branches and the new branch will have the sum of 
probabilities: (0.11+0.13=0.24). 

• Now consider the least probable two entries including the combined one and repeat the 
assignment. If you have two entries with identical probabilities then use the tie-breaker rule 
(we do not face this issue in this example!).  

• Continue the above until you combine the last two entries. 
• Codewords are read from “RIGHT-to-LEFT” as tabulated.  
• Final column stands for the length of each codeword.  
• We compute the average length of the Huffman code and compare it against the entropy of 

the source to see how good the design is. 
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Symbol Pk
A

B

C

D

E

F

0.25

0.20

01.6

0.15

0.13

0.11

Huffman
Code
10

00

111

110

011

010

Code
Length

2

2

3

3

3

3

0

0

0

0

0
1

1

1

1
1

0.31

0.24

0.44

0.56

1.0

Binary
Code
000

001

010

011

100

101

Code
Length

3

3

3

3

3

3

 

The average length of this code is: 

           symbolbitsxxxxxxLHuffman /55.2311.0313.0315.0316.0220.0225.0 =+++++=  

The difference in this case is lowered to:  

           symbolbitsSHL /0191.05309.255.2)( =−=− , 
which is almost perfect.  
 
It can be shown that the source S, has an average code length bound by: 
 1)()( +≤≤ SHLSH Huffman         (3.2) 
It is known in the information theory community that we have a uniquely decodable code C with 
with K codewords of length },,2,1;{ Kiforli L= , the Kraft-McMillan inequality says: 

        (3.3) 12
1

≤∑
=

−
K

i

li

 
Example 3.4: Extended Huffman Code. Consider a source with alphabet  with 
probabilities {0.8, 0.02, 0.18}. If you compute the entropy of this we get 

 and the Huffman code is give by: 

},,{ 321 aaaA =

symbolbitSH /816.0)( =

 
The average length of this code is equal to ,/2.1 symbolBitslHuffman =  which is 0.384 
bits/symbol away from the entropy bound. 

In many applications, we can reduce the coding rate by creating blocks of symbols and code them 
together. In this case, it has been shown that the rate R of the code (slightly different than saying 
average length since we have blocks of symbols not individual symbols) 

 
n

SHRSH 1)()( +≤≤                (3.4) 
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where n is the number of alphabet symbols we block them together. Let us now use this to encode 
pair of letters of this example. 

 
If we compute the average length for this extended code we get , 
which corresponds to 0.8758 Bits/Symbol per letter, which is only 0.06 bits/symbol away from the 
entropy. This we have achieved significant of compression and came very close to the 
theoretically achievable limit, the entropy. 

SymbolBitslHuffman /7516.1=

 
Adaptive Huffman Coding:  
Huffman coding above requires knowledge of the alphabet and the probabilities. The first is easy 
in most applications. However, statistics of real sources are not known as in image, audio and 
written data compression. Then we need a 2-pass procedure (i) to train the code by measuring 
probabilities and (ii) employ it on data. To make it practical these two steps must be integrated and 
a 1-pass procedure is needed, hence the need for an adaptive coding algorithm. One such 
algorithm is covered by Sayood (see reference cited in P.3.)1  (Download a copy of a pdf file put 
together from that work.)  
Sayood has applied this adaptive algorithm to lossless image. Audio, and text compression. Tables 
below display performance of Huffman (2-pass) and adaptive Huffman (1-pass) coding a set of 
four images. 

 

 
As we can see from these tables,  there is a 50-100% improvement on compression when pixel 
differences are adaptively encoded instead of a two-pass non-adaptive Huffman coding. 
Similarly, he has experimented with text of  his Chapter 3, and the non-adaptive vs adaptive 
storage requirement were 70,000 bytes and 43,000 bytes, i.e., rather significant improvement. 

                                                           
1 K. Sayood, Introduction to Data Compression, Morgan-Kaufman, 1996. 
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Finally, he has played with a CD-quality audio sampled at 44.1 kHz with 16-bit resolution. The 
results are shown in the following two tables (top: non-adaptive, bottom: adaptive). 

 

 
 
Run-Length Coding: 
In a number of compression applications, such as image, fax, speech, we may see that a particular 
symbol repeats itself many times before being interrupted by another symbol.  Consider a short 
string (20 pixels long) of an 8-bit digitized image (0-255) shows only three colors: Black: “0”  
White: “255” and Gray: “128” 

 
• If we want to apply compression on this string, we need to code 20 different pixels in some 

fashion.  
• Let us recognize that there are consecutive groups of 4 black pixels, 11 white pixels and 5 gray 

pixels.  
• Can we encode these three pairs of numbers? The answer is yes by using Run-Length Coding 

(RLC or RLE).   
 
Example 3.4 RLC Based on ISO Standard:  

 

Here we have only B/W pixels in the following fashion: …, 4b, 9w, 2b, 2w, 6b, 6w, 2b, ...  
 
ISO Standard on RLC (RLE) has come up with variable-length binary codes for different runs of 
white and black pixels as shown in the table below. These codes are all pre-fix and there is no 
ambiguity when they arrive at the receiver. 4 black pixels are assigned “011” whereas 6 white 
pixels are represented by: “1110” 
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RL      Code
4 b ’011’  
9 w ’10100’
2 b ’11 
2 w ’0111’ 
6 b ’0010’ 
6 w ’1110’ 
2 b ’11’ 

 
Information transmitted for this piece of B/W picture becomes: ..011101001101110010111011….. 

  
• There are tables for 13-63 bits long white and black runs 
• There are more coarse tables for 64-1728 bits long stings and finally 
• EOL is represented by: 12 consecutive “0” followed by a single “1” 
• Similarly, these three sets of tables for color imagery, one for each of red (R), green (G), and 

blue (B) components. 
  
Example 3.5 RLC in JPEG: In JPEG image compression, one of the last steps is to encode 
certain coefficients after many processing stages using two quantizer: (a) DPCM quantizer2 for the 
location (1,1) and RLC for the rest. If the following 8x8 was the resultant coefficient set: 

88 1   0    0     0    0   0    0  
 5   0   -4   0     0    0   0    0 
-2   1   0    0     0    0   0    0 
 0   0   0    0     0    0   0    0  
 0   0   0    0     0 0   0    0 
 0   0   0    0     0 0   0    0 
 0   0   0    0     0 0   0    0 
 0   0   0    0     0    0   0   -1 

Let us forget the term at location (1,1), i.e., 88. For the remaining 65 terms, we need at least 4 bits 
per symbol since we have the range between [-4 to +5]. The number of bits needed for this 8x8 
                                                           
2 DPCM: Differential Pulse Code Modulation, which will be discussed later together with other lossy codecs. 
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data set would be: (4 bits/symbol x 65 symbols)= 260 bits. In addition we will need at least 7 bits 
to represent  88 but let us use 8 bits. Thus the overall bit rate would be 268 bits /block. 
 
Now let us turn these 15 symbols into a 1-dimensional array in a zig-zag fashion used in JPEG and 
other image compression standards.  This ordering is best seen in the following sketch: 

 
 
After the scan, the order of terms in 8x8 would be:  

(1,2), (2,1),  
   1       5 

SUM of indices: 3 

(3,1), (2,2), (1,3),  
   -2       0      0 

4 

(1,4), (2,3), (3,2), (4,1),  
   0       -4      1        0 

5 

(5,1), (4,2), (3,3), (2,4), (1,5),  
   0       0       0        0        0 

6 

(1,6), (2,5), (3,4), (4,3), (5,2), (6,1),  
   0       0          0       0      0        0 

7 

(7,1), (6,2), (5,3), (4,4), (3,5), (2,6), (1,7),  
   2      0        0         3        0      0         0 

8 

(8,1), (2,7), (3,6), (5,4), (4,5), (5,4), (6,3), (7,2), (8,1),  
   0        0       0       0         0        0      0        0       0 

9 

(8,2), (7,3), (6,4), (5,5), (4,6), (3,7), (2,8),  
   0       0        0       0         0      0         0 

10 

(3,8), (4,7), (5,6), (6,5), (7,4),(8,3),  
   0       0        0        0       0      0 

11 

(8,4), (7,5), (6,6), (5,7), (4,8),  
   0       0       0         0      0 

12 

(5,8), (6,7), (7,6), (8,5),  
   0       0        0       0 

13 

(8,6), (7,7), (6,8),  
   0       0        0 

14 

(7,8), (8,7),  
   0       0 

15 

(8,8). 
   -1 

16 

 
 
Let us write the run-lengths for this example:  
(1,1), (5,1), (-2,1), (0,3), (-4,1), (1,1), (0,12), (2,1),  (0,2), (3,1), (0,39), (-1,1) 
 
Excluding 88, we need to handle 12 sets of parameters instead of 65 pixels.  Here we need to 
encode 0 four places 4/12;   1 two places 2/12,  2 once, 3 once, 5 once, -1 once, -2 once, -4 once 

These notes are © Huseyin Abut March 2007 



 38

1/12 each. Let us design an Huffman code for the amplitudes using the following source code and 
the function called Huffman 
 
% Let us design a Huffmann code for the ac doefficients of an 4x4 image block for  
% the example 3.5. 
% dc coefficient, i.e., location (1,1) is normally encoded with a different codec (DPCM). 
% Applied by: H. Abut - March 2006 
% Enter data input 
% Note: Our probability array was: prob= [4/12 2/12 1/12 1/12 1/12 1/12 1/12 1/12] 
prob=input('Enter Values for Probabilities \n'); 
% Call Huffman code design function 
[code,l_ave]=huffman(prob); 
% Display results 
disp ('Everage code length='); disp(l_ave); 
disp('Code values'); 
disp(code) 
 
Results:  
Everage code length= 
    2.8333 
Code values 
       0 
     101 
    1000 
    1001 
    1110 
    1111 
    1100 
    1101 
 
Bit Rate Computation:  Let us use fixed number of bits for run sizes: since we have runs 1 – 39 we 
need 6 bits for each run. 
Bits for a21 through a88  =1 bit x ( 4x 6)+  3 bits x(2x6)+4 bits x(6x6)= 24+36+144=204  
Total bits= 8 bits for a11+204= 212 bits /block 
Compression rate: 268/212=1: 1.264  
All this effort did NOT yield much savings. However, in an image frame there are hundreds of 
8x8 blocks and the types of runs will be repeated many times and the Huffman coder will have a 
much better compression feature.  
 
The m-file for Huffman Coder: 
 
function [h,l]=huffman(p); 
% HUFFMAN Huffman code generator 
%   [h,l]=huffman(p), Huffman code generator 
%   returns h the Huffman code matrix, and l the 
%         average codeword length for a source with  
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%  probability vector p.  
%   This function is included with permission from the text by Proakis and Salehi,  
%   Contemporary Communication Systems, Chapter 4,  
%   PWS Publishing Company, Boston, MA, 1998.  
 
if length(find(p<0))~=0, 
  error('Not a prob. vector, negative component(s)') 
end 
if abs(sum(p)-1)>10e-10, 
  error('Not a prob. vector, components do not add up to 1') 
end 
n=length(p); q=p; m=zeros(n-1,n); 
for i=1:n-1 
  [q,l]=sort(q); m(i,:)=[l(1:n-i+1),zeros(1,i-1)]; q=[q(1)+q(2),q(3:n),1]; 
end 
for i=1:n-1 
  c(i,:)=blanks(n*n); 
end 
c(n-1,n)='0'; c(n-1,2*n)='1'; 
for i=2:n-1 
  c(n-i,1:n-1)=c(n-i+1,n*(find(m(n-i+1,:)==1))... 
  -(n-2):n*(find(m(n-i+1,:)==1))); 
  c(n-i,n)='0'; c(n-i,n+1:2*n-1)=c(n-i,1:n-1); c(n-i,2*n)='1'; 
  for j=1:i-1 
    c(n-i,(j+1)*n+1:(j+2)*n)=c(n-i+1,... 
    n*(find(m(n-i+1,:)==j+1)-1)+1:n*find(m(n-i+1,:)==j+1)); 
  end 
end 
for i=1:n 
  h(i,1:n)=c(1,n*(find(m(1,:)==i)-1)+1:find(m(1,:)==i)*n); 
  l1(i)=length(find(abs(h(i,:))~=32)); 
end 
l=sum(p.*l1); 

Golomb-Rice codes 
Golomb codes are a class of prefix codes which are suboptimal but very easy to implement.  They 
are frequently used to encode differential (residual) signals formed by subtracting the difference 
between two speech segments or two consecutive image frames. These differences are known to 
have probability distributions (histograms) of two-sided exponential type (Laplacian). As in the 
case of Huffman coding, symbols are arranged in descending probability order, and non-negative 
integers are assigned to the symbols, beginning with 0 for the most probable symbol (see the 
figure.)  
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0 1 2 ...
x

p(  )x

 
Probability distribution function assumed by Golomb and Rice codes. 

 
To encode an integer n, it is divided into two components, to the most significant part nM 
(quotient) and to the least significant part nL (remainder): 

 mnnand
m
nn LM  mod =⎥⎦
⎥

⎢⎣
⎢=   Lnmn +⋅= Mn    (3.2)  

where  m is the parameter of the Golomb coding and k is a positive integer.  km 2=
1. nM is outputted using unary code as shown in the table below.  
2. nL is outputted using binary code. 

In practice, nL is computed by masking out all but the k low order bits.   

Example: 3.6 An example of the Golomb coding with the parameter : 224 ==m
 n nM nL Code of 

nM 
Code of 

nL 
GR Code 

 0 0 0 0 00 000 
 1 0 1 0 01 001 
 2 0 2 0 10 010 
 3 0 3 0 11 011 
 4 1 0 10 00 1000 
 5 1 1 10 01 1001 
 6 1 2 10 10 1010 
 7 1 3 10 11 1011 
 8 2 0 110 00 11000 
 : : : : : : 

 
Example 3.7 Golomb-Rice Coding of Trevor Image Sequence : Two consecutive frames (5 and 
6) from the Trevor Sequence (one of the standard video streams used in image processing and 
compression community) and their pixel-by-pixel differences are shown in the next figure. The 
original pixel values were 8-bit (0-255) gray-levels, black=0 and white=255. Normalized 
histogram (approximation to probability density) versus pixel difference values are also shown. 
The last plot is very similar to the exponential (Laplacian) probability curve as discussed above.   
 Performance of the Golomb-Rice lossless compression for several frames are also shown below. 
Average bit rate was 4.357 bits/pixel as a result of an average compression ratio: 1:1.836 
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GRAY-CODE 
Better results can be achieved if the binary representation of symbols (pixels) are transformed into 
Gray codes before partitioning an image into the bit planes. Consider an 8-bit image consisting of 
only two pixel values, which are either 127 and 128. Corresponding binary representations are:  

0111 1111 
1000 0000 

Now, even if the image could be compressed by 1 bit/pixel by a trivial algorithm, the bit planes 
are completely random since the values 127 and 128 differ in every bit position.  
Gray coding is a method of mapping a set of numbers into a binary alphabet such that successive 
numerical changes result in a change of only one bit in the binary representation. Thus, when two 
neighboring pixels differ by one, only a single bit plane is affected. Following figure shows the 
binary code (BC) and their corresponding Gray code representations (GC) in the case of 4-bit 
number of 0 to 15. One method of generating a Gray code representation from the binary code is 
by the following logical operation: 

               (3.3) ( 1>>⊕= BCBCGC )
where “⊕” denotes bit-wise exclusive-OR operation, and “>>” denotes bit-wise logical right-shift 
operation. Note that the ith GC bit plane is constructed by performing an exclusive OR on the ith 
and (i+1)th BC bit planes. The most significant bit planes of the binary and the Gray codes are 
identical. Figures shows the bit planes of binary and Gray codes. 
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Illustration of four-bit binary and Gray codes. 
 
Suppose that the bit planes are compressed by the MSP (most significant plane) first and the LSP 
last. A small improvement in a context based compression is achieved, if the context templates 
includes few pixels from the previously coded bit plane. Typically the bits included in the 
template are the bit of the same pixel that is to be coded, and possibly the one above it. This kind 
of templated is referred as a 3D-template. 
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 Binary code  Gray code 
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Binary and Gray code bit planes for test image Camera, bit planes 7 through 4. 
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 Binary code  Gray code 
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Binary and Gray code bit planes for test image Camera, bit planes 3 through 0. 
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Lempel-Ziv Universal Coding: (LZW version is used in PKZip and Winzip)  
Basic idea: 
• Recursively parse input sequence into non-overlapping blocks of variable size, while 

constructing a dictionary of blocks seen thus far. 
• Each sequence found in the dictionary is coded into its index in the dictionary. 
• The dictionary is initialized with the available symbols, {0 & 1}. 
• Each successive block in the parsing is chosen to be the largest (longest) word w that has 

appeared in the dictionary. Therefore, the word wa formed by concatenating w and the 
following symbol that is not in the dictionary. 

• Before continuing the parsing wa is added to the dictionary and a becomes the first symbol in 
the next block. 

Example 3.8:  Consider the following input string: 

01100110010110000100110 
Steps: 
1. Place parsed blocks in parentheses and 
2. New dictionary word, i.e., the parsed block followed by the first symbol of the next block, as a 

subscript. 
 

(0)01(1)11(1)10(0)00(01)011(10)100(01)010(011)0110(00)000(00)001(100)1001(11)110(0) 
 
3. The parsed data implies a code by indexing the dictionary words in the order in which they 

were added and sending the indices to the decoder. 
4. Decoder starts with the same tables as the encoder one and using the identical rules it decodes 

the input symbol string uniquely. 
 
Example 3.9:  Let us observe the animation on LZW Algorithm: http://www.data-
compression.com/lempelziv.shtml
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