Chapter 6: Stochastic (Random) Processes

Let outcomes ξ from S be such that, for $\xi \in S$ we assign a function of time according to some rule:

$$
\mathrm{X}(\mathrm{t}, \xi) \text { where } \mathrm{t} \in \mathrm{I}
$$

1) The graph of $X(t, \xi)$ for a fixed ξ is called a realization.
2) For each fixed t_{k} the set $X\left(t_{k}, \xi\right)$ is a r.v.
\Rightarrow Indexed family of r.v. \Rightarrow Stochastic Process

- If the index set "I" is If "I" is continuous, then it is a continuous-time stochastic process.
- If discrete-time then, we have a discrete-time stochastic process.

FIGURE 8.1

Savaral rel izafons di mardon posess

Ex: 6.1 Random Binary Sequence

ξ selected randomly in interval $S=[0,1] \quad b_{1} b_{2} \ldots$ binary expansion of ξ, then

$$
\xi=\sum_{i=1}^{\infty} b_{i} 2^{-i} ; \text { where } b_{i} \in\{0,1\}
$$

Define $\mathrm{X}(\mathrm{t}, \xi)=b_{\mathrm{n}} \quad \mathrm{n}=1,2, \ldots$ The result is a sequence of binary numbers.
Ex: 6.3 Find $P[X(1, \xi)=0]$ and $P[X(1, \xi)=0$ and $X(2, \xi)=1]$

$$
P[X(1, \xi)=0]=P[0 \leq \xi<1 / 2]=1 / 2
$$

$$
P[X(1, \xi)=0 \text { and } X(2, \xi)=1]=P[1 / 4 \leq \xi<1 / 2]=1 / 4
$$

Sequence of k bits has subinterval of length 2^{-k}.

Ex: 6.2 Random Sinusoids

FIGURE 6.2a

Sunsidmith modonangladt
ξ in interval $S=[-1,1]$
Define $\mathrm{X}(\mathrm{t}, \xi)=\xi \cos (2 \pi \mathrm{t})$
$-\infty<\mathrm{t}<\infty$
Amplitude versions

(a)

FGURE 6.2b

Stusid with rendin phas:

$$
\xi \text { in interval } \mathrm{S}=[-\pi, \pi]
$$

Define $\mathrm{Y}(\mathrm{t}, \xi)=\operatorname{Cos}(2 \pi \mathrm{t}+\xi)$
Time-shifted versions

(b)

Ex: 6.4 Find pdf of $X\left(\mathrm{t}_{0}, \xi\right)$ and $\mathrm{Y}\left(\mathrm{t}_{0}, \xi\right)$ of Ex: 6.2

- If $\cos \left(2 \pi \mathrm{t}_{0}\right)=0, \mathrm{X}\left(\mathrm{t}_{0}, \xi\right)=0 \Rightarrow f_{X\left(t_{0}\right)}(x)=\delta(x)$
- Else, $X\left(\mathrm{t}_{0}, \xi\right)$ is uniformly distributed in $\left[-\cos \left(2 \pi \mathrm{t}_{0}\right), \cos \left(2 \pi \mathrm{t}_{0}\right)\right]$, since $\mathrm{X}\left(\mathrm{t}_{0}, \xi\right)$ is uniformly distributed in $[-1,1]$

$$
f_{X\left(t_{0}\right)}(x)=\left\{\begin{array}{cc}
0 & \text { o.w. } \\
1 / 2\left|\cos \left(2 \pi t_{0}\right)\right| & x \leq\left|\cos \left(2 \pi t_{0}\right)\right|
\end{array}\right.
$$

Note: pdf of $X\left(\mathrm{t}_{0}, \xi\right)$ depends on t_{0}.

FIGURE 6.3
|al ptitesicuscid ain renyen arplitade and (t) pdist stuscid sif rendan phase.

$\mathrm{Y}\left(\mathrm{t}_{0}, \xi\right)$ has an arcsine distribution (see Ex: 3.28).

$$
f_{Y\left(t_{0}\right)}(y)=\frac{1}{\pi \sqrt{1-y^{2}}}|y|<1
$$

Note: pdf of $\mathrm{Y}\left(\mathrm{t}_{0}, \xi\right)$ does not depend on t_{0}.

Random Process Specification:

Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{k}}$ be k r.v.'s obtained by sampling a Random Process $\mathrm{X}(\mathrm{t}, \xi)$ at times $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}$

$$
\mathrm{X}_{1}=\mathrm{X}\left(\mathrm{t}_{1}, \xi\right), \mathrm{X}_{2}=\mathrm{X}\left(\mathrm{t}_{2}, \xi\right), \ldots, \mathrm{X}_{\mathrm{k}}=\mathrm{X}\left(\mathrm{t}_{\mathrm{k}}, \xi\right)
$$

Then a stochastic (random) process is specified by the collection of $\mathrm{k}^{\text {th }}$ order joint cdf:

$$
F_{X_{1} \ldots X_{k}}\left(x_{1}, x_{2}, \ldots x_{k}\right)=P\left[X_{1} \leq x_{1}, X_{2} \leq x_{2}, \ldots, X_{k} \leq x_{k}\right]
$$

If Stochastic Process is discrete then pmf can be used to specify Stochastic Process

$$
p_{X_{1} \ldots X_{k}}\left(x_{1}, x_{2}, \ldots x_{k}\right)=P\left[X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{k}=x_{k}\right]
$$

If Stochastic Process is continuous-valued the pdf can be used to specify Stochastic Process:

$$
f_{X_{1} \ldots X_{k}}\left(x_{1}, x_{2}, \ldots x_{k}\right)
$$

A Stochastic Process $\mathrm{X}(\mathrm{t})$ has independent increments if for any k and any choice of sampling instants:

$$
\begin{aligned}
& \mathrm{t}_{1}<\mathrm{t}_{2}<\ldots<\mathrm{t}_{\mathrm{k}}, \quad \text { the random variables } \\
& \mathrm{X}\left(\mathrm{t}_{2}\right)-\mathrm{X}\left(\mathrm{t}_{1}\right) \ldots \mathrm{X}\left(\mathrm{t}_{\mathrm{k}}\right)-\mathrm{X}\left(\mathrm{t}_{\mathrm{k}-1}\right) \quad \text { are independent }
\end{aligned}
$$

Then the joint pdf (pmf) of $X\left(t_{1}\right) \ldots X\left(t_{k}\right)$ is given by the product of marginal pdf (pmf).

A Stochastic Process is Markov if the future of the process given the present is independent of the past:

$$
\begin{gathered}
f_{X\left(t_{k}\right)}\left(x_{k} \mid X\left(t_{k-1}\right)=x_{k-1}, \ldots, X\left(t_{1}\right)=x_{1}\right) \\
=f_{X\left(t_{k}\right)}\left(x_{k} \mid X\left(t_{k-1}\right)=x_{k-1}\right)
\end{gathered}
$$

If $\mathrm{X}(\mathrm{t})$ is continuous, but for discrete $\mathrm{X}(\mathrm{t})$ the expression becomes

$$
\begin{aligned}
P\left[X\left(t_{k}\right)\right. & \left.=x_{k} \mid X\left(t_{k-1}\right)=x_{k-1}, \ldots, X\left(t_{1}\right)=x_{1}\right] \\
& =P\left[X\left(t_{k}\right)=x_{k} \mid X\left(t_{k-1}\right)=x_{k-1}\right]
\end{aligned}
$$

Mean function:

$$
m_{X}(t)=E[X(t)]=\int_{-\infty}^{\infty} x f_{X(t)}(x) d x
$$

In general the mean function is a function of time.

Autocorrelation function (joint moment):

$$
R_{X}\left(t_{1}, t_{2}\right)=E\left[X\left(t_{1}\right) X\left(t_{2}\right)\right]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x y f_{X\left(t_{1}\right) X\left(t_{2}\right)}(x, y) d x d y
$$

Autocovariance function:

$$
\begin{aligned}
C_{X}\left(t_{1}, t_{2}\right) & =E\left[\left(X\left(t_{1}\right)-m_{X}\left(t_{1}\right)\right)\left(X\left(t_{2}\right)-m_{X}\left(t_{2}\right)\right)\right] \\
& =R_{X}\left(t_{1}, t_{2}\right)-m_{X}\left(t_{1}\right) m_{X}\left(t_{2}\right)
\end{aligned}
$$

Variance of $X(t)$:

$$
\sigma_{X(t)}^{2}=\operatorname{VAR}[X(t)]=E\left[\left(X\left(t_{1}\right)-m_{X}\left(t_{1}\right)\right)^{2}\right]=C_{X}(t, t)
$$

Correlation Coefficient:

$$
\rho_{X}\left(t_{1}, t_{2}\right)=\frac{C_{X}\left(t_{1}, t_{2}\right)}{\sqrt{C_{X}\left(t_{1}, t_{1}\right) C_{X}\left(t_{2}, t_{2}\right)}} \quad \text { with the property: } \quad\left|\rho_{X}\left(t_{1}, t_{2}\right)\right| \leq 1
$$

Ex: 6.6 Let $\mathrm{X}(\mathrm{t})=\mathrm{Acos} 2 \pi \mathrm{t}$. Find mean, autocorrelation and autocovariance $m_{X}(t)=E[A \cos 2 \pi t]=E[A] \cos 2 \pi t$

Note: The mean function is time-dependent.

$$
\begin{aligned}
& R_{X}\left(t_{1}, t_{2}\right)=E\left[A \cos 2 \pi t_{1} A \cos 2 \pi t_{2}\right]=E\left[A^{2}\right] \cos 2 \pi t_{1} \cos 2 \pi t_{2} \\
& \begin{aligned}
C_{X}\left(t_{1}, t_{2}\right) & =R_{X}\left(t_{1}, t_{2}\right)-m_{X}\left(t_{1}\right) m_{X}\left(t_{2}\right)=\left\{E\left[A^{2}\right]-E[A]^{2}\right\} \cos 2 \pi t_{1} \cos 2 \pi t_{2} \\
& =\operatorname{VAR}[A] \cos 2 \pi t_{1} \cos 2 \pi t_{2}
\end{aligned}
\end{aligned}
$$

Ex: 6.7 Let $X(t)=\cos (w t+\theta)$, where θ is uniformly distributed in $(-\pi, \pi)$. Let us find mean, autocorrelation and autocovariance.

$$
\begin{aligned}
& m_{X}(t)=E[\cos (w t+\theta)]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \cos (w t+\theta) d \theta=0 \\
& \begin{aligned}
C_{X}\left(t_{1}, t_{2}\right) & =R_{X}\left(t_{1}, t_{2}\right)=E\left[\cos \left(w t_{1}+\theta\right) \cos \left(w t_{2}+\theta\right)\right] \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{1}{2}\left\{\cos \left(w\left(t_{1}-t_{2}\right)\right)+\cos \left(w\left(t_{1}+t_{2}\right)+2 \theta\right)\right\} d \theta \\
& =\frac{1}{2} \cos w\left(t_{1}-t_{2}\right) \quad \text { See Appendix } A
\end{aligned}
\end{aligned}
$$

Note: $\mathrm{m}_{\mathrm{X}}(\mathrm{t})$ is constant and $\mathrm{C}_{\mathrm{X}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)$ depends only on $\left|\mathrm{t}_{1}-\mathrm{t}_{2}\right|$.
Gaussian Random Process: $\mathrm{X}(\mathrm{t})$ is a Gaussian S.P. if the samples $\mathrm{X}_{1}=\mathrm{X}\left(\mathrm{t}_{1}\right)$, $\ldots, \mathrm{X}_{\mathrm{k}}=\mathrm{X}\left(\mathrm{t}_{\mathrm{k}}\right)$ are jointly Gaussian with

$$
f_{X_{1} X_{2} \ldots X_{k}}\left(x_{1}, \ldots, x_{k}\right)=\frac{1}{(2 \pi)^{k / 2}|K|^{1 / 2}} \exp \left\{-\frac{1}{2}(\underline{x}-\underline{m})^{T} K^{-1}(\underline{x}-\underline{m})\right\}
$$

where

$$
\underline{m}=\left[\begin{array}{c}
m_{X}\left(t_{1}\right) \\
\vdots \\
m_{X}\left(t_{k}\right)
\end{array}\right] \quad K=\left[\begin{array}{cccc}
C_{X}\left(t_{1}, t_{1}\right) & C_{X}\left(t_{1}, t_{2}\right) & \cdots & C_{X}\left(t_{1}, t_{k}\right) \\
C_{X}\left(t_{2}, t_{1}\right) & C_{X}\left(t_{2}, t_{2}\right) & \cdots & C_{X}\left(t_{2}, t_{k}\right) \\
\vdots & \vdots & & \vdots \\
C_{X}\left(t_{k}, t_{1}\right) & \cdots & & C_{X}\left(t_{k}, t_{k}\right)
\end{array}\right]
$$

Ex 6.8 X_{n} is iid Gaussian r.v. with m and σ^{2}, then

$$
K=\left[\begin{array}{cccc}
\sigma^{2} & 0 & \cdots & 0 \\
0 & \ddots & 0 & \vdots \\
\vdots & 0 & \ddots & 0 \\
0 & \cdots & 0 & \sigma^{2}
\end{array}\right]=\sigma^{2} I \quad \text { Because: } C_{X}\left(t_{i}, t_{j}\right)=\sigma^{2} \delta_{i j}
$$

Then:

$$
\begin{gathered}
f_{X_{1} X_{2} \ldots X_{k}}\left(x_{1}, \ldots, x_{k}\right)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{k / 2}} \exp \left\{-\sum_{i=1}^{k}\left(x_{i}-\underline{m}\right)^{2} / 2 \sigma^{2}\right\} \\
=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right) \cdots f_{X_{k}}\left(x_{k}\right)
\end{gathered}
$$

Two or more variable Random Process:

1. For a pair of S.P. $\mathrm{X}(\mathrm{t})$ and $\mathrm{Y}\left(\mathrm{t}^{\prime}\right)$ all possible joint density functions must be specified for all choices of t_{1}, \ldots, t_{k} and $t_{1}{ }^{\prime}, \ldots, t_{k}{ }^{\prime}$.
2. $\mathrm{X}(\mathrm{t})$ and $\mathrm{Y}\left(\mathrm{t}^{\prime}\right)$ are independent iff the vector r.v. \mathbf{X} and \mathbf{Y} are independent for all k, j and all choices of $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}, \mathrm{t}_{1}{ }^{\prime}, \ldots, \mathrm{t}_{\mathrm{k}}{ }^{\prime}$.
3. Crosscorrelation: $\mathrm{R}_{\mathrm{XY}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=\mathrm{E}\left[\mathrm{X}\left(\mathrm{t}_{1}\right) \mathrm{Y}\left(\mathrm{t}_{2}\right)\right]$
$\mathrm{X}(\mathrm{t})$ and $\mathrm{Y}(\mathrm{t})$ processes are orthogonal if $\mathrm{R}_{\mathrm{XY}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=0$ for all t_{1} and t_{2}
4. Cross-Covariance: $\mathrm{C}_{\mathrm{XY}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=\mathrm{R}_{\mathrm{XY}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)-\mathrm{m}_{\mathrm{X}}\left(\mathrm{t}_{1}\right) \mathrm{m}_{\mathrm{Y}}\left(\mathrm{t}_{2}\right)$ $\mathrm{X}(\mathrm{t})$ and $\mathrm{Y}(\mathrm{t})$ are uncorrelated if $\mathrm{C}_{\mathrm{XY}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=0$ for all t_{1} and t_{2}
Ex: 6.9 Given a process with $X(t)=\cos (w t+\theta)$ and $Y(t)=\sin (w t+\theta)$, where θ is uniformly distributed in $[-\pi, \pi]$. Find cross-covariance.

$$
\begin{aligned}
R_{X Y}\left(t_{1}, t_{2}\right) & =E\left[\cos \left(w t_{1}+\theta\right) \sin \left(w t_{2}+\theta\right)\right] \\
= & E\left[-\frac{1}{2} \sin \left(w\left(t_{1}-t_{2}\right)\right)+\frac{1}{2} \sin \left(w\left(t_{1}+t_{2}\right)+2 \theta\right)\right] \\
& =-\frac{1}{2} \sin \left(w\left(t_{1}-t_{2}\right)\right)
\end{aligned}
$$

Ex: 6.10 Given an additive noise channel with a model: $Y(t)=X(t)+N(t)$ Find cross-correlation. Assume that $\mathrm{X}(\mathrm{t})$ and $\mathrm{N}(\mathrm{t})$ are independent

$$
\begin{aligned}
R_{X Y}\left(t_{1}, t_{2}\right) & =E\left[X\left(t_{1}\right) Y\left(t_{2}\right)\right]=E\left[X\left(t_{1}\right)\left\{X\left(t_{2}\right)+N\left(t_{2}\right)\right\}\right] \\
R_{X Y}\left(t_{1}, t_{2}\right) & =E\left[X\left(t_{1}\right) X\left(t_{2}\right)\right]+E\left[X\left(t_{1}\right) N\left(t_{2}\right)\right] \\
& =R_{X}\left(t_{1}, t_{2}\right)+E\left[X\left(t_{1}\right)\right] E\left[N\left(t_{2}\right)\right] \\
& =R_{X}\left(t_{1}, t_{2}\right)+m_{X}\left(t_{1}\right) m_{N}\left(t_{2}\right)
\end{aligned}
$$

Examples of Discrete-Time Stochastic Processes:
Given iid Stochastic Process: X_{n} : discrete iid r.v. with common, m, σ^{2} Then, X_{n} - sequence is called iid R.P. and for any time instants $\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{k}}$

$$
\begin{aligned}
F_{X_{1} \ldots X_{k}}\left(x_{1}, \ldots, x_{k}\right) & =P\left[X_{1} \leq x_{1}, \ldots, X_{k} \leq x_{k}\right] \\
& =F_{X}\left(x_{1}\right) F_{X}\left(x_{2}\right) \cdots F_{X}\left(x_{k}\right)
\end{aligned}
$$

The mean of iid S.P.:

$$
\mathrm{m}_{\mathrm{X}}(\mathrm{n})=\mathrm{E}\left[\mathrm{X}_{\mathrm{n}}\right]=\mathrm{m} \quad \text { for all } \mathrm{n} ; \quad \text { Constant mean }
$$

$$
\begin{aligned}
\text { if } \quad \begin{aligned}
n_{1} \neq n_{2}: \quad C_{X}\left(n_{1}, n_{2}\right) & =E\left(\left(X_{n_{1}}-m\right)\left(X_{n_{2}}-m\right)\right] \\
& =E\left[X_{n_{1}}-m\right] E\left[X_{n_{2}}-m\right]=0 \\
\text { if } \quad n_{1}=n_{2}: \quad C_{X}(n, n) & =E\left[\left(X_{n}-m\right)^{2}\right]=\sigma^{2}
\end{aligned}
\end{aligned}
$$

Because: $C_{X}\left(n_{1}, n_{2}\right)=R_{X}\left(n_{1}, n_{2}\right)-m^{2}$, which results in:

$$
\begin{aligned}
& C_{X}\left(n_{1}, n_{2}\right)=R_{X}\left(n_{1}, n_{2}\right)-m^{2} \\
& \quad \Rightarrow R_{X}\left(n_{1}, n_{2}\right)=C_{X}\left(n_{1}, n_{2}\right)+m^{2}
\end{aligned}
$$

Ex: 6.11 Bernoulli R.P. : i.i.d. Bernoulli R.V. I_{n} from a set $\{0,1\}$, where I_{n} : Indicator function for the event a light bulb fails \& replaced on day n .

FIGURE 6.4

poses5. $l_{n}=1$ irdicates thata
ligtlbulafols std is mplated is
day a (b) A Asilitationda
bintislposess S_{n} detructs
the nutbar of figt tulbs fiat
tevelaled ip tstine.

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{I}}(\mathrm{n})=\mathrm{p} \\
& \sigma_{\mathrm{I}}^{2}=\mathrm{p}(1-\mathrm{p})
\end{aligned}
$$

Find Prob. that first 4-bits
(3) are 1001:

(b)

$$
P\left[I_{1}=1, I_{2}=0, I_{3}=0, I_{4}=1\right]=p(1-p)(1-p) p=p^{2}(1-p)^{2}
$$

Sum Process:

$$
\text { Let } \begin{aligned}
\mathrm{S}_{\mathrm{n}} & =\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots+\mathrm{X}_{\mathrm{n}} \quad \mathrm{n}=1,2, \ldots \\
& =\mathrm{S}_{\mathrm{n}-1}+\mathrm{X}_{\mathrm{n}},
\end{aligned}
$$

$\mathrm{pmf} / \mathrm{pdf}$ of S_{n} is found by convolution or characteristic equation methods. The block diagram shows a counting process:

```
FIGURE 6.6
Thasimpveess
S
So =0, caibegererded
inthskey.
```


$$
\begin{aligned}
& E\left[S_{n}\right]=m_{S}(n)=n E[X]=n m \\
& \qquad \begin{aligned}
\sigma_{S_{n}}^{2}=n & \sigma_{X}^{2}=n \sigma^{2} \\
C_{S}(n, k) & =E\left[\left(S_{n}-E\left[S_{n}\right]\right)\left(S_{k}-E\left[S_{k}\right]\right)\right] \\
& =E\left[\left(S_{n}-n m\right)\left(S_{k}-k m\right)\right] \\
& =E\left[\left\{\sum_{i=1}^{n}\left(X_{i}-m\right)\right\}\left\{\sum_{j=1}^{k}\left(X_{k}-m\right)\right\}\right] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{k} \underbrace{E\left[\left(X_{i}-m\right)\left(X_{j}-m\right)\right]}_{C_{X}(i, j)=\sigma^{2} \delta_{i j}}
\end{aligned}
\end{aligned}
$$

which yields:

$$
C_{S}(n, k)=\sum_{i=1}^{\min \{n, k\}} C_{X}(i, i)=\min (n, k) \sigma^{2}
$$

FIGURE 6.78
Fixt-crda amegnesic foss

FIGURE 6.70
Naingareage procass

Both
"ARMA"

Autoregressive
Moving
Avmman

Linear Prediction\end{array}

\& \rightarrow Linear estimation of \alpha

\& \rightarrow Find-\alpha

6.7 \mathrm{~b} \& $$
\begin{array}{l}\text { IIR or Recursive Filter } \\
\text { Moving Average } \\
\text { FIR Filter }\end{array}
$$\end{aligned}\right.\)

Examples of Continuous-Time Stochastic Processes

(As a limit of Discrete-Time Stochastic Processes)
Poisson Process

- Events occur randomly at a rate λ
- Let $\mathrm{N}(\mathrm{t})$ be the number of occurrences in time interval $[0, \mathrm{t}]$. $\mathrm{N}(\mathrm{t})$ is nondecreasing, integer-valued, continuous-time R.P.
- Let $[0, \mathrm{t}]$ be divided into n -intervals of duration $\delta=\mathrm{t} / \mathrm{n}$ and assume

1) Probability of more than one event occurring in a subinterval is negligible.

\Rightarrow Bernoulli Trial

2) Event occurrences in a subinterval is independent of activities in other subintervals

\Rightarrow Bernoulli Trials are Independent

$\Rightarrow \mathrm{N}(\mathrm{t})$ is counting process that counts number of success in n-trials. Keeping $\mathrm{np}=\lambda \mathrm{t}$ fixed, let $\mathrm{n} \rightarrow \infty$ and $\mathrm{p} \rightarrow 0$. Then we have a poisson distribution with parameter λt
\Rightarrow Poisson Process $\mathrm{N}(\mathrm{t})$ in the interval [0,t] has Poisson distribution with

$$
P[N(t)=k]=\frac{(\lambda t)^{2}}{k!} e^{-\lambda t} \quad \text { for } k=0,1,2, \cdots
$$

The independent and stationary increments property leads us to write for $\mathrm{t}_{1}<\mathrm{t}_{2}$:

$$
\begin{aligned}
P\left[N\left(t_{1}\right)=i, N\left(t_{2}\right)=j\right] & =P\left[N\left(t_{1}\right)=i\right] P\left[N\left(t_{2}\right)-N\left(t_{1}\right)=j-i\right] \\
& =P\left[N\left(t_{1}\right)=i\right] P\left[N\left(t_{2}-t_{1}\right)=j-i\right] \\
& =\frac{\left(\lambda t_{1}\right)^{i}}{i!} e^{-\lambda t_{1}} \cdot \frac{\left(\lambda\left(t_{2}-t_{1}\right)\right)^{j-i}}{(j-i)!} e^{-\lambda\left(t_{2}-t_{1}\right)}
\end{aligned}
$$

Autocovariance of $\mathrm{N}(\mathrm{t})$ for $\mathrm{t}_{1}<\mathrm{t}_{2}$:

$$
\begin{aligned}
C_{N}\left(t_{1}, t_{2}\right) & =E\left[\left(N\left(t_{1}\right)-\lambda t_{1}\right)\left(N\left(t_{2}\right)-\lambda t_{2}\right)\right] \\
& =E\left[\left(N\left(t_{1}\right)-\lambda t_{1}\right)\left\{N\left(t_{2}\right)-N\left(t_{1}\right)-\lambda t_{2}+\lambda t_{1}+N\left(t_{1}\right)-\lambda t_{1}\right\}\right] \\
C_{N}\left(t_{1}, t_{2}\right) & =\underbrace{E\left[\left(N\left(t_{1}\right)-\lambda t_{1}\right)\right] E\left[\left(N\left(t_{2}-t_{1}\right)-\lambda\left(t_{2}-t_{1}\right)\right)\right]+\operatorname{VAR}\left[N\left(t_{1}\right)\right]}_{0} \\
& =\operatorname{VAR}\left[N\left(t_{1}\right)\right]=\lambda t_{1} \quad \text { Since } t_{1} \leq t_{2}
\end{aligned}
$$

In general we have:

$$
C_{N}\left(t_{1}, t_{2}\right)=\lambda \min \left\{t_{1}, t_{2}\right\}
$$

Ex: 6.19 15 Inquires/minute; A Poisson Process Find $P[N(10)=3$ and $N(60)-$ $\mathrm{N}(45)=2]$

Poisson \Rightarrow indep increment \& stationary increment

$$
\begin{aligned}
P[N(10)=3 \text { and } N(60)-N(45)=2]= & P[N(10)=3] P[N(60)-N(45)=2] \\
& =P[N(10)=3] P[N(60-45)=2] \\
& =\frac{(10 / 4)^{3} e^{-10 / 4}}{3!} \frac{(15 / 4)^{2} e^{-15 / 4}}{2!}
\end{aligned}
$$

Ex: 6.22 Random Telegraph Signal

$\mathrm{X}(\mathrm{t})$ is $\pm 1 \quad \mathrm{P}[\mathrm{X}(0)= \pm 1]=1 / 2 \quad \mathrm{X}(\mathrm{t})$ is Poisson with rate α
Probability mass function (pmf):

FIGURE 6.9

Senjlapondaration
talega;hsigul The

idetercrential ranter
nlonles

$$
P[X(t)= \pm 1]=P[X(t)= \pm 1 \mid X(0)=1] P[X(0)=1]+P[X(t)= \pm 1 \mid X(0)=-1] P[X(0)=-1]
$$

Since $\mathrm{X}(\mathrm{t})$ has same polarity as $\mathrm{X}(0)$ only when even number of events

$$
\begin{aligned}
P[X(t)= \pm 1 \mid X(0)=1]= & P[N(t)=\text { even int eger }] \\
& =\sum_{j=0}^{\infty} \frac{(\alpha t)^{2 j}}{(2 j)!} e^{-\alpha t} \\
& =e^{-\alpha t} \frac{1}{2}\left\{e^{\alpha t}+e^{-\alpha t}\right\}=\frac{1}{2}\left\{1+e^{-2 \alpha t}\right\}
\end{aligned}
$$

$X(t)$ and $X(0)$ differ in sign with odd number of events:

$$
\begin{aligned}
P[X(t)= \pm 1 \mid X(0)=1] & =\sum_{j=0}^{\infty} \frac{(\alpha t)^{j+1}}{(2 j+1)!} e^{-\alpha t} \\
& =e^{-\alpha t} \frac{1}{2}\left\{e^{\alpha t}+-e^{-\alpha t}\right\}=\frac{1}{2}\left\{1-e^{-2 \alpha t}\right\}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& P[X(t)=1]=\frac{1}{2} \cdot \frac{1}{2}\left\{1+e^{-2 \alpha t}\right\}+\frac{1}{2} \cdot \frac{1}{2}\left\{1-e^{-2 \alpha t}\right\}=\frac{1}{2} \\
& P[X(t)=-1]=1-P[X(t)=1]=\frac{1}{2}
\end{aligned}
$$

Thus signal is equally likely to be ± 1. Next we find the mean, variance and autocovariance functions.

$$
\begin{aligned}
& m_{X}(t)=(1) \cdot P[X(t)=1]+(-1) \cdot P[X(t)=-1]=0 \\
& \operatorname{VAR}[X(t)]=E\left[X(t)^{2}\right]=(1)^{2} \cdot P[X(t)=1]+(-1)^{2} \cdot P[X(t)=-1]=1 \\
& C_{X}\left(t_{1}, t_{2}\right)=E\left[X\left(t_{1}\right) X\left(t_{2}\right)\right]=(1) P\left[X\left(t_{1}\right)=X\left(t_{2}\right)\right]+(-1) P\left[X\left(t_{1}\right) \neq X\left(t_{2}\right)\right] \\
& \\
& \quad=\frac{1}{2}\left\{1+e^{\left.-2 \alpha t_{2}-t_{1}\right\}}\right\}
\end{aligned}
$$

Note: Time samples of $\mathrm{X}(\mathrm{t})$ become less correlated as time between them increases. Also it does not matter which time is greater

Ex: 6.23 Filtered Poisson Impulse Train: Zero at $\mathrm{t}=0$ and increases by one unit at random arrival times: $\mathrm{S}_{\mathrm{j}}, \mathrm{i}=1,2, \ldots$

$$
N(t)=\sum_{i=1}^{\infty} u\left(t-S_{i}\right) \quad N(0)=0
$$

We can view $\mathrm{N}(\mathrm{t})$ as the integral of a train of delta functions

$$
Z(t)=\sum_{i=1}^{\infty} \delta\left(t-S_{i}\right)
$$

We can obtain other continuous-time processes by replacing the step function by another function $\mathrm{h}(\mathrm{t})$-Figure 6.10b.

FIGURE 6.10a

Palsmprosass ss itegal of unir of cella finctisrs.

FIGURE 5.10 b
Filesastranol dala butions

Ex: 6.24 Shot Noise: $h(t)$ is the current pulse generator when a photoelectron hits a detector.

$$
X(t)=\sum_{i=1}^{\infty} h\left(t-S_{i}\right)
$$

Find expected value: $E[X(t)]=E[E[X(t) \mid N(t)]$, where $\mathrm{N}(\mathrm{t})$ is number of impulses that occurred up to time t

$$
E[E[X(t) \mid N(t)=k]]=E\left[\sum_{j=1}^{\infty} h\left(t-S_{j}\right)\right]=\sum_{j=1}^{\infty} E\left[h\left(t-S_{j}\right)\right]
$$

Since independent and uniformly distributed in interval [0,t]:

$$
E\left[h\left(t-S_{j}\right)\right]=\int_{0}^{t} h(t-s) \frac{d s}{t}=\frac{1}{t} \int_{0}^{t} h(u) d u
$$

Thus:

$$
E[X(t) \mid N(t)=k]=\frac{k}{t} \int_{0}^{t} h(u) d u
$$

and

$$
E[X(t) \mid N(t)]=\frac{N(t)}{t} \int_{0}^{t} h(u) d u
$$

Finally, we obtain:

$$
\begin{aligned}
E[X(t)] & =E[E[X(t) \mid N(t)]]=\frac{E[N(t)]}{t} \int_{0}^{t} h(u) d u \\
& =\lambda \int_{0}^{t} h(u) d u \quad \text { where } \quad E[N(t)]=\lambda t
\end{aligned}
$$

The integral is finite, as t becomes large $\mathrm{E}[\mathrm{N}(\mathrm{t})] \rightarrow$ constant
(Skip Wiener Process and Brownian Motion)

Stationary Random Process (Strictly Stationary)

- Nature of randomness stays unchanged with time (Independent of time origin).
- A discrete-time or continuous S.P. X(t) is stationary if the joint distribution of any set of samples does not depend on the time origin:

$$
F_{X\left(t_{1}\right) \cdots X\left(t_{k}\right)}\left(x_{1}, \ldots, x_{k}\right)=F_{X\left(t_{1}+\tau\right) \cdots X\left(t_{k}+\tau\right)}\left(x_{1}, \ldots, x_{k}\right)
$$

for all τ, all k, and all choices of t_{1}, \ldots, t_{k}

- First-order cdf of a stationary R.P. must be independent of t .

$$
\begin{aligned}
& F_{X(t)}(x)=F_{X(t+\tau)}(x)=F_{X}(x) \quad \forall t, \forall \tau \\
& m_{X(t)}=E[X(t)]=m \quad \forall t \\
& \operatorname{VAR}[X(t)]=\sigma^{2} \quad \forall t
\end{aligned}
$$

- $2^{\text {nd }}$ order cdf of a stationary R.P. can depend only on the time difference between the samples:

$$
\begin{array}{ll}
F_{X}\left(t_{1}\right) X\left(t_{2}\right)\left(x_{1}, x_{2}\right)=F_{X\left(t_{1}\right) X\left(t_{2}-t_{1}\right)}\left(x_{1}, x_{2}\right) \quad \forall t_{1}, t_{2} \\
R_{X}\left(t_{1}, t_{2}\right)=R_{X}\left(t_{2}-t_{1}\right)=R_{X}(\tau) & \text { where } \tau=t_{2}-t \\
C_{X}\left(t_{1}, t_{2}\right)=C_{X}\left(t_{2}-t_{1}\right)=C_{X}(\tau) & \text { where } \tau=t_{2}-t
\end{array}
$$

Ex: 6.26 Show i.i.d. R.P. is stationary:

$$
\begin{gathered}
F_{X\left(t_{1}\right) \cdots X\left(t_{k}\right)}\left(x_{1}, x_{2}, \ldots x_{k}\right)=F_{X}\left(x_{1}\right) F_{X}\left(x_{2}\right) \cdots F_{X}\left(x_{k}\right) \\
=F_{X\left(t_{1}+\tau\right) \cdots X\left(t_{k}+\tau\right)}\left(x_{1}, \cdots x_{k}\right)
\end{gathered}
$$

$$
\text { for all } k, t_{1}, \ldots, t_{k} \text {. }
$$

Therefore, i.i.d. R.P. is stationary.
Ex: 6.27 Is sum process a discrete-time stationary process?

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{n}}=\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots+\mathrm{X}_{\mathrm{n}} \quad \text { where } \mathrm{X}_{\mathrm{i}} \text { are iid sequences } \\
& \mathrm{m}_{\mathrm{s}}(\mathrm{n})=\mathrm{nm} \operatorname{VAR}\left[\mathrm{~S}_{\mathrm{n}}\right]=\mathrm{n} \sigma^{2} \quad
\end{aligned}
$$

Mean and Variance are not constant but linear with time index n, thus sum process cannot be a stationary process.

Ex: 6.28 Show Random Telegraph Signal of Ex: 6.22 is stationary.
Need to show that:
$P\left[X\left(t_{1}\right)=a_{1}, \ldots, X\left(t_{k}\right)=a_{K}\right]=P\left[X\left(t_{1}+\tau\right)=a_{1}, \ldots, X\left(t_{k}+\tau\right)=a_{K}\right]$
for any k, any $\mathrm{t}_{1}<\cdots<\mathrm{t}_{\mathrm{k}}$, and $\mathrm{a}_{\mathrm{j}}= \pm 1$.
Since the Poisson process has the independent increments property:

$$
\begin{gathered}
P\left[X\left(t_{1}\right)=a_{1}, \ldots, X\left(t_{k}\right)=a_{K}\right]=P\left[X\left(t_{1}\right)=a_{1}\right] P\left[X\left(t_{2}\right)=a_{2} \mid X\left(t_{1}\right)=a_{1}\right] \cdots \\
P\left[X\left(t_{k}\right)=a_{k} \mid X\left(t_{k-1}\right)=a_{k-1}\right]
\end{gathered}
$$

Since the values of the random telegraph at $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{k}}$ is determined by time intervals ($\mathrm{t}_{\mathrm{j}}, \mathrm{t}_{\mathrm{j}+1}$):

$$
\begin{aligned}
& P\left[X\left(t_{1}+\tau\right)=a_{1}, \ldots, X\left(t_{k}+\tau\right)=a_{K}\right] \\
& =P\left[X\left(t_{1}+\tau\right)=a_{1}\right] P\left[X\left(t_{2}+\tau\right)=a_{2} \mid X\left(t_{1}+\tau\right)=a_{1}\right] \ldots \\
& P\left[X\left(t_{k}+\tau\right)=a_{k} \mid X\left(t_{k-1}+\tau\right)=a_{k-1}\right]
\end{aligned}
$$

The transition probabilities in the above two equations are equal since

$$
\begin{aligned}
P \mid X\left(t_{j+1}\right) & \left.=a_{j+1} \mid X\left(t_{j}\right)=a_{j}\right] \\
& = \begin{cases}\frac{1}{2}\left\{1+e^{-2 \alpha\left(t_{j+1}-t_{j}\right)}\right\} & \text { if } a_{j}=a_{j+1} \\
\frac{1}{2}\left\{1-e^{-2 \alpha\left(t_{j+1}-t_{j}\right)}\right\} & \text { if } a_{j} \neq a_{j+1}\end{cases} \\
& =P\left[X\left(t_{j+1}+\tau\right)=a_{j+1} \mid X\left(t_{j}+\tau\right)=a_{j}\right]
\end{aligned}
$$

Thus they differ only in the first term

$$
P\left[X\left(t_{1}\right)=a_{1}\right] \quad \text { and } \quad P\left[X\left(t_{1}+\tau\right)=a_{1}\right]
$$

if $P[X(0)= \pm 1]=1 / 2$
then:

$$
P\left[X\left(t_{1}\right)=a_{1}\right]=1 / 2, P\left[X\left(t_{1}+\tau\right)=a_{1}\right]=1 / 2
$$

Therefore,

$$
P\left[X\left(t_{1}\right)=a_{1}, \ldots, X\left(t_{k}\right)=a_{K}\right]=P\left[X\left(t_{1}+\tau\right)=a_{1}, \ldots, X\left(t_{k}+\tau\right)=a_{K}\right]
$$

The process is stationary.
If $P[X(0)= \pm 1] \neq 1 / 2 \quad$ they are not equal.
However,

$$
\begin{aligned}
P[X(t)=a] & =P[X(t)=a \mid X(0)=a 1] \\
& = \begin{cases}\frac{1}{2}\left\{1+e^{-2 \alpha t}\right\} & \text { if } a=1 \\
\frac{1}{2}\left\{1-e^{-2 \alpha t}\right\} & \text { if } a=-1\end{cases}
\end{aligned}
$$

for small $\mathrm{t}, \mathrm{X}(\mathrm{t})$ is close to 1 ; but as t increases $\mathrm{X}(\mathrm{t})=1 \Rightarrow 1 / 2$ thus as t becomes large the joint pmf's become equal. Therefore when the process settles down into "steady state" is becomes stationary.

Wide-Sense Stationary Random Processes

A discrete-time or continuous-time random process $\mathrm{X}(\mathrm{t})$ is wide-sense stationary (WSS) if

$$
m_{X}(t)=m \quad \text { for all } t,
$$

and

$$
\mathrm{C}_{\mathrm{X}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=\mathrm{C}_{\mathrm{X}}\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right) \quad \text { for all } \mathrm{t}_{1}, \mathrm{t}_{2}
$$

$\mathrm{X}(\mathrm{t})$ and $\mathrm{Y}(\mathrm{t})$ are jointly wide-sense stationary if they are both wide-sense stationary and if their cross-covariance depends only on $t_{1}-t_{2}$

$$
\mathrm{C}_{\mathrm{XY}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=\mathrm{C}_{\mathrm{XY}}(\tau) \quad \text { and } \quad \mathrm{R}_{\mathrm{XY}}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right)=\mathrm{R}_{\mathrm{XY}}(\tau) \quad \tau=\mathrm{t}_{2}-\mathrm{t}_{1}
$$

All stationary random processes are wide-sense stationary.

Ex: 6.29 X_{n} : Two interleaved sequences of indep. random variables.
For n even $X_{n}= \pm 1 \quad p=1 / 2$
For n odd $X_{n}=1 / 3,-3 \quad p=9 / 10$ and $1 / 10$

$$
\begin{aligned}
& m_{X}(n)=0 \quad \text { for all } n \\
& C_{X}(i, j)=\left\{\begin{array}{lr}
E\left[X_{i}\right] E\left[X_{j}\right]=0 & i \neq j \\
E\left[X_{i}^{2}\right]=1 & i=j
\end{array}\right.
\end{aligned}
$$

Therefore, X_{n} is wide-sense stationary.

Properties of WSS processes:

1. Autocorrelation function at $\tau=0 \quad \Rightarrow \quad$ average power

$$
R_{X}(0)=E\left[X(t)^{2}\right] \quad \text { for all } t
$$

2. Autocorrelation function is an even function of τ :

$$
R_{X}(\tau)=E[X(t+\tau) X(t)]=E[X(t) X(t-\tau)]=R_{X}(-\tau)
$$

3. Autocorrelation function is a measure of the rate of change of random processes:

$$
\begin{aligned}
P[|X(t+\tau)-X(t)|>\varepsilon]= & P\left[(X(t+\tau)-X(t))^{2}>\varepsilon^{2}\right] \\
& \leq \frac{E\left[(X(t+\tau)-X(t))^{2}\right]}{\varepsilon^{2}} \\
& \leq \frac{2\left\{R_{X}(0)-R_{X}(\tau)\right\}}{\varepsilon^{2}}
\end{aligned}
$$

4. Autocorrelation function is maximum at $\tau=0$. Because,

$$
\begin{aligned}
& E[X Y]^{2} \leq E\left[X^{2}\right] \cdot E\left[Y^{2}\right] \\
& R_{X}(\tau)^{2}=E[X(t+\tau) X(t)]^{2} \leq E\left[X^{2}(t+\tau)\right] \cdot E\left[X^{2}(t)\right]=R_{X}(0)^{2}
\end{aligned}
$$

5. If $R_{X}(0)=R_{X}(d)$ then $R_{X}(\tau)$ is periodic with period d and $X(\mathrm{t})$ is mean-square periodic i.e. $E\left[(X(t+d)-X(t))^{2}\right]=0$
6. $R_{X}(\tau)$ approaches the square of the mean of $\mathrm{X}(\mathrm{t})$ as $\tau \rightarrow \infty$

Let $\mathrm{X}(\mathrm{t})=\mathrm{m}+\mathrm{N}(\mathrm{t})$, where $\mathrm{N}(\mathrm{t})$ is a zero-mean process for which

$$
\begin{aligned}
R_{X}(\tau) & \rightarrow 0 \text { as } \tau \rightarrow \infty, \text { then } \\
R_{X}(\tau) & =E\left[(m+N(t+\tau)(m+N(t))]=m^{2}+2 m E[N(t)]+R_{N}(\tau)\right. \\
& =m^{2}+R_{N}(\tau) \rightarrow m^{2} \quad \text { as } \tau \rightarrow \infty
\end{aligned}
$$

Ex: 6.30
Fig 6.12a is autocorrelation function for random telegraph signal

$$
R_{X}(\tau)=e^{-2 \alpha|\tau|}
$$

Fig 6.12b is the autocorrelation function for a sinusoid

$$
R_{X}(\tau)=\frac{a^{2}}{2} \cos \left(2 \pi f_{0} \tau\right)
$$

Fig 6.12c is autocorrelation function for the process

$$
\mathrm{Z}(\mathrm{t})=\mathrm{X}(\mathrm{t})+\mathrm{Y}(\mathrm{t})+\mathrm{m}
$$

Where $\mathrm{X}(\mathrm{t})$ is random telegraph process, $\mathrm{Y}(\mathrm{t})$ is sinusoid with random phase, and m is constant. $\mathrm{X}(\mathrm{t})$ and $\mathrm{Y}(\mathrm{t})$ are independent.

$$
\begin{aligned}
R_{Z}(\tau) & =E[\{X(t+\tau)+Y(t+\tau)+m\}\{X(t)+Y(t)+m\}] \\
& =R_{X}(\tau)+R_{Y}(\tau)+m^{2}
\end{aligned}
$$

FIGURE 6.12

(a) Autccomedaiantunation of a randonteleglaph signal. (o)
Ashosmilaton fortion of a sinusid with renten plase. (c) mbatulyonturtion of Batdon posess the has mazers nean apatiodiscorpatent. and a "ardan" oznponert

(c)
(Skip Wide-Sense Stationary Gaussian Random Processes) (Skip Cyclostationary Random Processes, Skip Section 6.6)

Time Averages of Random Processes and Ergodic Theorems

Sometimes we are interested in estimating the mean or autocorrelation functions from the time average of a single realization

$$
\langle X(t)\rangle_{T}=\frac{1}{2 T} \int_{-T}^{T} X(t, \xi) d t
$$

and

$$
\begin{aligned}
& \operatorname{VAR}\left[\langle X(t)\rangle_{T}\right]=\frac{1}{2 T} \int_{-2 T}^{2 T}\left(1-\frac{|u|}{2 T}\right) C_{X}(u) d u \\
& \text { where } u=t-t^{\prime} \text { for }-2 T<u<2 T
\end{aligned}
$$

Let $\mathrm{X}(\mathrm{t})$ be a wide-sense stationary (WSS) process with $\mathrm{m}_{\mathrm{X}}(\mathrm{t})=\mathrm{m}$, then $\lim _{T \rightarrow \infty}\langle X(t)\rangle_{T}=m$ in the mean square sense, if and only if

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-2 T}^{2 T}\left(1-\frac{|u|}{2 T}\right) C_{X}(u) d u=0
$$

A WSS process is said to be mean ergodic if it satisfies the above conditions.
A time-average estimate for the autocorrelation function of $\mathrm{Y}(\mathrm{t})$ is

$$
\langle Y(t+\tau) Y(t)\rangle_{T}=\frac{1}{2 T} \int_{-T}^{T} Y(t+\tau) Y(t) d t
$$

The time-average autocorrelation converges to $R_{Y}(\tau)$ in the mean square sense if $Y(t)$ is mean ergodic.

For discrete case, the mean and autocorrelation functions of X_{n} are:

$$
\begin{aligned}
& \left\langle X_{n}\right\rangle_{T}=\frac{1}{2 T+1} \sum_{n=-T}^{T} X_{n} \\
& \left\langle X_{n+k} X_{n}\right\rangle_{T}=\frac{1}{2 T+1} \sum_{n=-T}^{T} X_{n+k} X_{n}
\end{aligned}
$$

If X_{n} is WSS, then

$$
E\left[\left\langle X_{n}\right\rangle_{T}\right]=m \quad \text { and } \quad \operatorname{VAR}\left[\left\langle X_{n}\right\rangle_{T}\right]=\frac{1}{2 T+1} \sum_{k=-2 T}^{2 T}\left(1-\frac{|k|}{2 T+1}\right) C_{X}(k)
$$

$\left[\left\langle X_{n}\right\rangle_{T}\right]$ is mean ergodic if $\operatorname{VAR}\left\lfloor\left\langle X_{n}\right\rangle_{T}\right\rfloor$ approaches zero with increasing T.

Ex: 6.43 Random Telegraph Process

$$
\begin{aligned}
& C_{X}(\tau)=e^{-2 \alpha|\tau|} \\
& \operatorname{VAR}\left[\langle X(t)\rangle_{T}\right]=\frac{1}{2 T} \int_{0}^{2 T}\left(1-\frac{u}{2 T}\right) e^{-2 \alpha u} d u<\frac{1}{2 T} \int_{0}^{2 T} e^{-2 \alpha u} d u=\frac{1-e^{-4 \alpha T}}{2 \alpha T}
\end{aligned}
$$

as $\mathrm{T} \rightarrow \infty \operatorname{VAR}\left[\langle X(t)\rangle_{T}\right] \rightarrow 0$, thus process is mean ergodic.
\#6.3 Fair coin toss Heads $X_{n}=(-1)^{n} \quad$ Tails $X_{n}=(-1)^{n+1}$
a) Sketch

If Heads	X_{n}	1	-1	1	-1	\ldots
If Tails	X_{n}	-1	1	-1	1	\ldots

b) Find the pmf
n even $\quad \mathrm{P}\left[\mathrm{X}_{\mathrm{n}}=1\right]=\mathrm{P}[$ Heads $]=1 / 2$
n odd $\quad \mathrm{P}\left[\mathrm{X}_{\mathrm{n}}=-1\right]=\mathrm{P}[$ Tails $]=1 / 2$
c) Find the joint pmf
k even

$$
\mathrm{P}\left[\mathrm{X}_{\mathrm{n}}=1, \mathrm{X}_{\mathrm{n}+\mathrm{k}}=1\right]=\mathrm{P}[\text { Heads }]=1 / 2
$$

$$
\begin{aligned}
& \mathrm{P}\left[\mathrm{X}_{\mathrm{n}}=-1, \mathrm{X}_{\mathrm{n}+\mathrm{k}}=-1\right]=\mathrm{P}[\text { Tails }]=1 / 2 \\
& \mathrm{P}\left[\mathrm{X}_{\mathrm{n}}= \pm 1, \mathrm{X}_{\mathrm{n}+\mathrm{k}}=\mp 1\right]=0
\end{aligned}
$$

k odd

$$
\begin{aligned}
& \mathrm{P}\left[\mathrm{X}_{\mathrm{n}}=1, \mathrm{X}_{\mathrm{n}+\mathrm{k}}=-1\right]=\mathrm{P}[\text { Heads }]=1 / 2 \\
& \mathrm{P}\left[\mathrm{X}_{\mathrm{n}}=-1, \mathrm{X}_{\mathrm{n}+\mathrm{k}}=1\right]=\mathrm{P}[\text { Tails }]=1 / 2 \\
& \mathrm{P}\left[\mathrm{X}_{\mathrm{n}}= \pm 1, \mathrm{X}_{\mathrm{n}+\mathrm{k}}= \pm 1\right]=0
\end{aligned}
$$

d) Find the mean and autocovariance
$\mathrm{E}\left[\mathrm{X}_{\mathrm{n}}\right]=1(1 / 2)+(-1)(1 / 2)=0$
k even $\quad E\left[X_{n} X_{n+k}\right]=(1)^{2}(1 / 2)+(-1)^{2}(1 / 2)=1$
k odd $\quad \mathrm{E}\left[\mathrm{X}_{\mathrm{n}} \mathrm{X}_{\mathrm{n}+\mathrm{k}}\right]=(1)(-1)(1 / 2)+(-1)(1)(1 / 2)=-1$
\#6. 15

$$
\mathrm{Z}(\mathrm{t})=\mathrm{Xt}+\mathrm{Y} \quad \mathrm{~m}_{\mathrm{X}}, \mathrm{~m}_{\mathrm{Y}},{\sigma_{\mathrm{X}}^{2}}_{2}^{2}, \sigma_{\mathrm{Y}}^{2}, \rho_{\mathrm{XY}}
$$

a) Find mean and autocovariance of $\mathrm{Z}(\mathrm{t})$

$$
\begin{aligned}
E[Z(t)]= & E[X t+Y]=E[X] t+E[Y]=t m_{X}+m_{Y}=m_{Z} \\
C_{Z}\left(t_{1}, t_{2}\right)= & E\left[\left(X t_{1}+Y\right)\left(X t_{2}+Y\right)\right]-m_{Z}\left(t_{1}\right) m_{Z}\left(t_{2}\right) \\
= & t_{1} t_{2} E\left[X^{2}\right]+\left(t_{1} .+t_{2}\right) E[X Y]+E\left[Y^{2}\right] \\
& \quad-t_{1} t_{2} m_{X}^{2}-\left(t_{1} \cdot+t_{2}\right) m_{X} m_{Y}-m_{Y}^{2} \\
= & t_{1} t_{2} \sigma_{X}^{2}+\left(t_{1} .+t_{2}\right) \sigma_{X} \sigma_{Y} \rho_{X Y}+\sigma_{Y}^{2}
\end{aligned}
$$

b) Find pdf of $\mathrm{Z}(\mathrm{t})$ if X and Y are jointly Gaussian r.v.

From example 4.32, (Page:222), where $\mathrm{Z}=\mathrm{X}+\mathrm{Y}$

$$
f_{Z(t)}(z)=\frac{\exp \left\{-\frac{\left(z-t m_{X}-m_{y}\right)^{2}}{2\left(t^{2} \sigma_{X}^{2}+2 t \sigma_{X} \sigma_{Y} \rho_{X Y}+\sigma_{Y}^{2}\right)}\right\}}{\sqrt{2 \pi\left(t^{2} \sigma_{X}^{2}+2 t \sigma_{X} \sigma_{Y} \rho_{X Y}+\sigma_{Y}^{2}\right)}}
$$

\#6.53

$$
\begin{aligned}
& X(t)=A \\
& (t) \text { is WSS }
\end{aligned}
$$

a) Show $X(t)$ is WSS

$$
\begin{aligned}
E[X(t)] & =E[A \cos w t+B \sin w t] \\
& =E[A] \cos w t+E[B] \sin w t=0 \\
C_{X}\left(t_{1}, t_{2}\right) & =E\left[\left(A \cos w t_{1}+B \sin w t_{1}\right)\left(A \cos w t_{2}+B \sin w t_{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& C_{X}\left(t_{1}, t_{2}\right)= E\left[A^{2}\right] \cos w t_{1} \cos w t_{2}+E\left[B^{2}\right] \sin w t_{1} \sin w t_{2} \\
&+E[A] E[B] \cos w t_{1} \sin w t_{2}+E[A] E[B] \sin w t_{1} \cos w t_{2} \\
&= E\left[A^{2}\right] \cos w t_{1} \cos w t_{2}+E\left[B^{2}\right] \sin w t_{1} \sin w t_{2} \\
&=E\left[A^{2}\right] \underbrace{\cos w t_{1} \cos w t_{2}+\sin w t_{1} \sin w t_{2}}_{\frac{1}{2} \cos w\left(t_{1}-t_{2}\right)}\} \\
& \text { where we assumed } \quad E\left[A^{2}\right]=E\left[B^{2}\right] \\
&= \frac{1}{2} E\left[A^{2}\right] \cos w\left(t_{1}-t_{2}\right)=\frac{1}{2} E\left[A^{2}\right] \cos w \tau \\
& \therefore \mathbf{X (t)} \text { is WSS }
\end{aligned}
$$

b) Show $\mathrm{X}(\mathrm{t})$ is not strictly-stationary

$$
\begin{aligned}
E\left[X^{3}(t)\right]= & E\left[(A \cos w t+B \sin w t)^{3}\right] \\
= & E\left[A^{3} \cos ^{3} w t+3 A^{2} B \cos ^{2} w t \sin w t+3 A B^{2} \cos w t \sin ^{2} w t\right. \\
& \left.+B^{2} \sin ^{3} w t\right] \\
= & \left.E\left[A^{3}\right] \cos ^{3} w t+E\left[B^{3}\right] \sin ^{3} w t=E\left[A^{3}\right] \cos ^{3} w t+\sin ^{3} w t\right) \\
= & \frac{E\left[A^{3}\right]}{4} \underbrace{\{3(\cos w t+\sin w t)+(\cos 3 w t-\sin 3 w t)\}}_{\text {these terms depend on } t \operatorname{explicitly}}
\end{aligned}
$$

moment of $\mathrm{X}(\mathrm{t})$ depends explicitly on time-origin

$$
\Rightarrow \quad \mathrm{X}(\mathrm{t}) \text { is not strictly-stationary }
$$

\#6.78 Find variance of Example 6.42 page 379.

$$
\begin{gathered}
\mathrm{X}(\mathrm{t})=\mathrm{A} \quad \text { A is zero mean, unit-variance r.v. } \\
E[X(t)]=E[A]=0 \\
E\left[X\left(t_{1}\right) X\left(t_{2}\right)\right]=E\left[A^{2}\right]=1 \\
\operatorname{VAR}\left[\langle X(t)\rangle_{T}\right]=\frac{1}{2 T} \int_{-2 T}^{2 T}\left(1-\frac{|u|}{2 T}\right) C_{X}(u) d u=2 \cdot \frac{1}{2 T} \int_{0}^{2 T}\left(1-\frac{u}{2 T}\right) d u=1
\end{gathered}
$$

$$
\Rightarrow \quad \text { This process is not mean-ergodic }
$$

