Chapter 5: Sums Random Variables

Let $S_{n}=X_{1}+X_{2}+\ldots+X_{n}$

$$
E\left[S_{n}\right]=E\left[X_{1}\right]+E\left[X_{2}\right]+\ldots+E\left[X_{n}\right]
$$

Ex: 5.1 Find $\sigma_{Z}{ }^{2}$ where $Z=X+Y \quad E[Z]=E[X]+E[Y]$

$$
\begin{aligned}
\sigma_{Z}^{2} & \left.=E\left\{[(X+Y)-(E[X]+E[Y])]^{2}\right\}=E\{(X-E[X])+(Y-E[Y])]^{2}\right\} \\
& =E\left[(X-E[X])^{2}\right]+E\left[(Y-E[Y])^{2}\right]+2 E[(X-E[X])(Y-E[Y])] \\
& =\sigma_{X}^{2}+\sigma_{Y}{ }^{2}+2 \operatorname{COV}(X, Y)
\end{aligned}
$$

If X and Y are uncorrelated or independent, then $\operatorname{COV}(X, Y)=0$ and

$$
\begin{aligned}
\sigma_{Z}^{2} & =\sigma_{X}^{2}+\sigma_{Y}^{2} \\
\sigma^{2} S_{n} & =E\left\{\sum_{j=1}^{n}\left(X_{j}-E\left[X_{j}\right]\right) \sum_{k=1}^{n}\left(X_{k}-E\left[X_{k}\right]\right)\right\} \\
& =\sum_{k=1}^{n} \sigma^{2} X_{k}+\sum_{\substack{j=1 \\
b u t \\
j \neq k}}^{n} \sum_{\mathbf{k}=1}^{n} \operatorname{COV}\left(X_{j} \cdot X_{k}\right)=\sum_{k=1}^{n} \sigma_{X_{k}}{ }^{2}
\end{aligned}
$$

Ex: 5.2 X and Y are i.i.d. r.v. with μ and σ^{2}

$$
\begin{aligned}
& E\left[S_{n}\right]=E\left[X_{1}\right]+\ldots+E\left[X_{n}\right]=n \mu \\
& \sigma S_{n}{ }^{2}=n \sigma_{X_{j}}{ }^{2}=n \sigma^{2}
\end{aligned}
$$

pdf of Sums of r.v.:

$n=2 \quad Z=X+Y$ and $X \& Y$ are independent.
Let us use characteristic function approach:

$$
\begin{aligned}
\Phi_{Z}(w) & =E\left[e^{-j w Z}\right]=E\left[e^{-j w(X+Y)}\right]=E\left[e^{-j w X}\right] \cdot E\left[e^{-j w Y}\right] \\
& =\Phi_{X}(w) \cdot \Phi_{Y}(w)
\end{aligned}
$$

Since $\Phi_{Z}(w) \Leftrightarrow f_{Z}(z)$
we can write equivalently:

$$
f_{Z}(z)=f_{X}(x)^{*} f_{Y}(y)
$$

and

$$
S_{n}=X_{1}+\ldots+X_{n} \quad \Rightarrow \Phi_{X_{1}}(w) \cdot \Phi_{X_{2}}(w) \cdots \Phi_{X_{n}}(w)
$$

On the other hand, if $\left\{X_{i}\right\}$ are all integer-valued r.v., then we can use probability generating function approach:

$$
G_{N}(z)=E\left[z^{N}\right\rfloor \text { and } N=X_{1}+\ldots+X_{n}
$$

which leads to:

$$
G_{N}(z)=E\left[Z^{X_{1}+\ldots+X_{n}}\right]=G_{X_{1}}(z) \cdot G_{X_{2}}(z) \cdots G_{X_{n}}
$$

Ex: 5.4 and 5.5 Let $S_{n}=X_{1}+\ldots+X_{n}$ be sum of i.i.d. with

$$
\Phi_{X_{k}}(w)=\Phi_{X}(w) \quad k=1,2, \ldots n
$$

then

$$
\Phi_{S_{n}}(w)=\left\{\Phi_{X}(w)\right\}^{n}
$$

pdf of S_{n} if X_{k} are i.i.d. exponential r.v.

$$
\Phi_{X}(w)=\frac{\alpha}{\alpha-j w}
$$

then

$$
\Phi S_{n}(w)=\left[\frac{\alpha}{\alpha-j w}\right]^{n} \underset{2 \boldsymbol{D}}{\Rightarrow} \mathbf{S}_{\mathbf{n}} \text { : m-Erlang r.v. of Table }
$$

Sample Mean, $\mathbf{M}_{\mathbf{n}}$

Let X_{1}, \ldots, X_{n} be n independent outcomes from experiments with an unknown mean, μ. Since they are from the same population X_{i} is i.i.d. with the same pdf:

$$
\begin{aligned}
& M_{n}=\frac{1}{n} \sum_{j=1}^{n} X_{j} \Rightarrow \text { Centroid, Center of Gravity } \\
& E\left[M_{n}\right]=E\left[\frac{1}{n} \sum_{j=1}^{n} X_{j}\right]=\frac{1}{n} \sum_{j=1}^{n} E\left[X_{j}\right]=\frac{n}{n} E\left[X_{j}\right]=\mu \\
& \sigma_{M_{n}}{ }^{2}=E\left[\left(M_{n}-\mu\right)^{2}\right]=E\left[\left(M_{n}-E\left[M_{n}\right]\right)^{2}\right]
\end{aligned}
$$

But

$$
\begin{aligned}
& S_{n}=X_{1}+X_{2}+\ldots X_{n} \Rightarrow M_{n}=\frac{S_{n}}{n} \\
& \sigma_{S_{n}}{ }^{2}=n \sigma_{X_{j}}{ }^{2}=n \sigma X^{2}
\end{aligned}
$$

Then:

$$
\sigma_{M_{n}}{ }^{2}=\frac{1}{n^{2}} \sigma_{S_{n}}{ }^{2}=\frac{1}{n} \sigma_{X}{ }^{2}
$$

Chebyshev's Inequality for $\mathbf{M}_{\mathbf{n}}$ (Sample Mean):

$$
P\left[\left|M_{n}-E\left[M_{n}\right]\right| \geq \varepsilon\right] \leq \frac{\sigma_{M_{n}}^{2}}{\varepsilon^{2}}=\frac{(1 / n) \cdot \sigma^{2}}{\varepsilon^{2}}=\frac{\sigma^{2}}{n \varepsilon^{2}}
$$

and compliment:

$$
P\left[\left|M_{n}-E\left[M_{n}\right]\right|<\varepsilon\right] \geq 1-\frac{\sigma^{2}}{n \varepsilon^{2}}
$$

Ex: 5.9 Given noisy voltage measurement with:

$$
X_{j}=v+N_{j} \quad \text { with } \quad N_{j}: N(0,1 \mu V)
$$

How many measurements are needed ($n=$?) for M_{n} to be within $\varepsilon=1 \mu V$ of true mean is at least .99 ?

$$
\begin{aligned}
& P\left[\left|M_{n}-\mu\right|<\varepsilon\right] \geq 1-\frac{\sigma^{2}}{n \varepsilon^{2}} \\
& \quad=1-\frac{(1 \mu V)^{2}}{n(1 \mu V)^{2}}=1-\frac{1}{n}=0.99 \quad \Rightarrow n=100
\end{aligned}
$$

Weak-Law of Large Numbers:

Let X_{1}, X_{2}, \ldots be a sequence of iid R.V. with $E\left[X_{i}\right]=\mu$, then for $\varepsilon>0$

$$
\lim _{n \rightarrow \infty} P\left[\left|M_{n}-\mu\right|<\varepsilon\right]=1 \quad \ggg \text { (seeFig } 5.1 \text { p } 278 \text { for interpretation) }
$$

Strong-Law of Large Numbers:

Let X_{1}, X_{2}, \ldots be a sequence of iid R.V. with $E\left[X_{i}\right]=\mu$ and finite variance, then

$$
P\left[\lim _{n \rightarrow \infty} M_{n}=\mu\right]=1
$$

Ex: 5.10 Bernoulli trials with unknown $\mu=p$ and $\sigma^{2}=p(1-p)$ How large n should be to have 0.95 probability that $f_{\mathrm{A}}(\mathrm{n})$ is within 1% of $p=$ $P[A]$?

If $X=I_{A}$ indicator function, then:

$$
E[X]=E\left[I_{A}\right]=\mu=p
$$

and

$$
\sigma_{I_{A}}{ }^{2}=p(1-p)
$$

$$
\begin{array}{r}
\frac{d \sigma^{2}}{d p}=1-2 p=0 \Rightarrow p^{*}=\frac{1}{2} \\
\Rightarrow \sigma_{I_{A}}{ }^{2} \leq\left(\frac{1}{2}\right)\left(1-\frac{1}{2}\right)=\frac{1}{4} \\
\therefore P\left[\left|f_{A}(n)-p\right| \leq \varepsilon\right] \leq \frac{\sigma^{2}}{n \varepsilon^{2}} \leq \frac{1 / 4}{n \varepsilon^{2}}
\end{array}
$$

Note: Chebyshev inequality results in loose bounds.

Since: $\quad \varepsilon=1 \%=0.01$ and $1-0.95=\frac{1}{4 n(0.01)^{2}} \Rightarrow n \geq 50,000$

Central Limit Theorem:

Let X_{1}, X_{2}, \ldots be a sequence of iid RV. With μ and σ^{2} and

$$
S_{n}=X_{1}+X_{2}+\ldots+X_{n}
$$

Let us define a new r.v.: $Z_{n}=\frac{S_{n}-n \mu}{\sigma \sqrt{n}}$,
Then

$$
\lim _{n \rightarrow \infty} P\left[Z_{n} \leq z\right]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z} e^{-\frac{x^{2}}{2} d x}
$$

\Rightarrow Sum of iid R.V. with any distribution in the limit approaches to that of Gaussian statistics!

Ex: 5.11 Orders: iid with $\mu=\$ 8 \quad \sigma=\$ 2$
a.) Estimate probability that first 100 customers will spend $\geq \$ 840$.

$$
\begin{aligned}
& S_{100}=X_{1}+X_{2}+\ldots+X_{100} \\
& E\left[S_{100}\right]=n \mu=800 \\
& Z_{100}=\frac{S_{100}-800}{2 \sqrt{100}}=\frac{S_{100}-800}{20} \\
& \sigma S_{100}^{2}=n \sigma^{2} \\
& \quad=100 \times 4=400
\end{aligned}
$$

From Figure 5.5 in Page 284 and Table 3.3 we have

$$
P\left[S_{100}>\$ 840\right]=P\left[Z_{100}>\frac{840-800}{20}\right]=P\left[Z_{100}>2\right] \approx Q(2)=0.0228
$$

b.) Prob. that 100 customers will spend $\$ 780 \leq \mathrm{S}_{100} \leq \$ 820$?

$$
\begin{aligned}
P[780 & \left.\leq S_{100} \leq 820\right]=P\left[-1 \leq Z_{100} \leq 1\right] \\
& \approx 1-2 Q(1)=0.682
\end{aligned}
$$

Ex: 5.12 After how many orders 90% sure that total expenditure $>\$ 1000$? Find n for which $P\left[S_{n}>\$ 1000\right]=0.90$

Recall $\quad E\left[S_{n}\right]=8 n \quad \sigma_{S}^{2}=4 n$

$$
P\left[S_{n}>\$ 1000\right]=P\left[Z_{n}>\frac{1000-8 n}{2 \sqrt{n}}\right]=0.90
$$

Note: $Q(-X)=1-Q(X) \Rightarrow 0.90$

$$
\Rightarrow Q(-X)=0.1 \Rightarrow X=-1.2815
$$

From Table 3.4, we get: $\frac{1000-8 n}{2 \sqrt{n}}=-1.2815$

$$
\begin{aligned}
& \Rightarrow 8 n-1.2815(2) \sqrt{n}-1000=0 \\
& \Rightarrow \quad \sqrt{n}=11.34 \quad \Rightarrow n=128.6 \text { or } 129
\end{aligned}
$$

Gaussian Approximation to Binomial Probability:

From Central Limit Theorem for n large:

$$
P[X=k] \approx P\left[k-\frac{1}{2}<Y<k+\frac{1}{2}\right] \approx \frac{\exp \left\{-\frac{(k-n p)^{2}}{2 n p(1-p)}\right\}}{\sqrt{2 \pi n p(1-p)}}
$$

where $\mu=n p$ and $\sigma^{2}=n p(1-p)$ of binomial distribution.
Ex: 5.14 In Ex: 5.10 Using Strong Law of Large Numbers we have obtained:

$$
\Rightarrow \mathrm{n} \geq 50,000
$$

Let $f_{\mathrm{A}}(\mathrm{n})$ be relative frequency of A in n -Bernoulli trials and let us use the Gaussian approximation to Binomial distribution:

$$
\begin{aligned}
& E\left[f_{A}(n)\right]=p \text { and } \sigma_{A}{ }^{2}=\frac{p(1-p)}{n} \\
& \Rightarrow Z_{n}=\frac{f_{A}(n)-p}{\sqrt{\frac{p(1-p)}{n}}} \text { with } E\left[Z_{n}\right]=0 \text { and } \sigma_{Z_{n}}{ }^{2}=1 \text { if } n \text { is large. }
\end{aligned}
$$

then,

$$
P\left[\left|f_{A}(n)-p\right|<\varepsilon\right] \approx P\left[\left|Z_{n}\right|<\frac{\varepsilon \sqrt{n}}{\sqrt{p(1-p)}}\right]=1-2 Q\left(\frac{\varepsilon \sqrt{n}}{\sqrt{p(1-p)}}\right)
$$

using

$$
\frac{d \sigma^{2}}{d p}=0 \Rightarrow \frac{d p(1-p)}{d p}=0 \Rightarrow p^{*}=\frac{1}{2} \Rightarrow p(1-p) \leq \frac{1}{4}
$$

then

$$
\sqrt{p(1-p)} \leq \sqrt{\frac{1}{4}}=\frac{1}{2}
$$

which results in:

$$
\begin{aligned}
& P\left[\left|f_{A}(n)-p\right|<\varepsilon\right]>1-2 Q(2 \varepsilon \sqrt{n}) \\
& 0.95 \text { is required } \Rightarrow 2 Q(2 \varepsilon \sqrt{n})=\frac{1-0.95}{2}=0.025
\end{aligned}
$$

from Table 3.3

$$
\Rightarrow 2 \varepsilon \sqrt{n} \approx 1.95 \Rightarrow \mathrm{n} \geq 9506 \text {; Much smaller than the result in Ex: } 5.10
$$

Finding Distributions Using DFT(FFT)

Let X be an integer-valued discrete R.V. in the range: $\{0,1, \ldots, N-1\}$: then

$$
\Phi_{X}(w)=\sum_{k=0}^{N-1} p_{k} e^{j w k}
$$

where $p_{k}=P[X=k]$ is pmf
and the characteristic function: $\Phi_{X}(w)$ is periodic in 2π since:

$$
e^{j w k}=e^{j w k} e^{j 2 \pi k}=e^{j k(w+2 \pi)}
$$

Let us sample function: $\Phi_{X}(w)$ at N-equally spaced values:

$$
c_{m}=\Phi_{X}\left(\frac{2 \pi}{N} m\right)=\sum p_{k} e^{j \frac{2 \pi k m}{N}} \quad \text { for } \mathrm{m}=0,1, \ldots, \mathrm{~N}-1
$$

Inverse DFT would yield:

$$
p_{k}=\frac{1}{N} \sum c_{m} e^{-j \frac{2 \pi k m}{N}} \quad \text { for } \mathrm{k}=0,1, \ldots, \mathrm{~N}-1
$$

Extend the range of X to $\{0,1, \ldots, N-1, N, \ldots, L-1\}$ by defining

$$
p_{j}^{\prime}=\left\{\begin{array}{cc}
p_{j} & 0 \leq j \leq N-1 \\
0 & N \leq j \leq L-1
\end{array}\right.
$$

DFT yields:

$$
c_{m}=\Phi_{X}\left(\frac{2 \pi}{L} m\right) \quad \text { for } m=0,1, \ldots, L-1
$$

Sum of iid integers: $\quad Z=X_{1}+X_{2}+\ldots+X_{n}$

$$
\text { If } X_{i}:\{0,1, \ldots, N-1\} \text { then } Z:\{0, \ldots, n(N-1)\}
$$

Obtain pmf of Z from DFT evaluated at $L=n(N-1)+1$ points

$$
d_{m}=\Phi_{Z}\left(\frac{2 \pi m}{L}\right)=\left[\Phi_{X}\left(\frac{2 \pi m}{L}\right)\right]^{n} \quad \text { for } \mathrm{m}=0,1, \ldots, \mathrm{~L}-1
$$

Since

$$
\Phi_{Z}(w)=\left[\Phi_{X}(w)\right]^{n}
$$

then

$$
P[Z=k]=\frac{1}{L} \sum_{m=0}^{L-1} d_{m} e^{-j \frac{2 \pi m k}{L}} \quad \text { for } k=0,1, \ldots, L-1
$$

Ex: 5.33 Let $Z=X_{1}+X_{2}$ with $\Phi_{X}(w)=\frac{1}{3}+\frac{2}{3} e^{j w}$
Find: $\mathrm{P}[\mathrm{Z}=1]$ via DFT. Since $X:\{0,1\}$, then $Z:\{0,1,2\}$
$\Phi_{Z}(w)=\left[\Phi_{X}(w)\right]^{2}$
$d_{m}=\Phi_{Z}(w)=\left[\Phi_{X}(w)\right]^{2}=\left[\frac{1}{3}+\frac{2}{3} e^{j \frac{2 \pi m}{3}}\right]^{2} \quad$ for $m=0,1,2$
$d_{0}=\left[\frac{1}{3}+\frac{2}{3}\right]^{2}=1 \quad d_{1}=\left[\frac{1}{3}+\frac{2}{3} e^{j \frac{2 \pi}{3}}\right]^{2}=\frac{1}{9}+\frac{4}{9} e^{j \frac{2 \pi}{3}}+\frac{4}{9} e^{j \frac{4 \pi}{3}}$
$d_{1}=\frac{1}{9}+\frac{4}{9} \cos (120)+\frac{4}{9} j \sin (120)+\frac{4}{9} \cos (240)+\frac{4}{9} j \sin (240)=-\frac{1}{3}$
Similarly,

$$
d_{2}=d_{1}^{*}=-1 / 3
$$

Substituting these in pmf equations:

$$
P[Z=1]=\frac{1}{3}\left\{d_{0}+d_{1} e^{-j \frac{2 \pi}{3}}+d_{2} e^{-j \frac{4 \pi}{3}}\right\}=\frac{1}{3}\left\{1-\frac{1}{3}\left(e^{-j \frac{2 \pi}{3}}+e^{-j \frac{4 \pi}{3}}\right)\right\}=\frac{4}{9}
$$

Let $S_{X}=\{0,1,2, \ldots\}$ be an open-ended sequence and $\Phi_{X}(w)$ is known. We want to obtain pmf values p_{k}^{\prime} from a finite set of samples the characteristic function:

$$
p_{k}^{\prime}=\frac{1}{N} \sum_{m=0}^{N-1} c_{m} e^{-j \frac{2 \pi k m}{N}} \quad \text { for } k=0,1, \ldots, N-1
$$

and

$$
\begin{aligned}
c_{m}= & \Phi_{X}\left(\frac{2 \pi m}{N}\right) \quad \text { for } m=0,1, \ldots, N-1 \\
c_{m}= & =\sum_{n=0}^{\infty} p_{n} e^{j \frac{2 \pi m n}{N}} \\
= & \left(p_{0}+p_{N}+p_{2 N}+\ldots\right) e^{j 0}+\left(p_{1}+p_{N+1}+\ldots\right) e^{j \frac{2 \pi m}{N}} \\
& \quad+\ldots+\left(p_{N-1}+p_{2 N-1}+\ldots\right) e^{j \frac{2 \pi m(N-1)}{N}} \\
= & \sum_{k=0}^{N-1} p_{k}^{\prime} e^{j \frac{2 \pi k m}{N}} \quad \text { with } p_{k}^{\prime}=p_{k}+p_{N+k}+p_{2 N+k}+\ldots
\end{aligned}
$$

From inverse DFT we get $p_{0}^{\prime}, p_{1}^{\prime}, \ldots, p_{N-1}^{\prime}$ which are equal to the desired p_{k} plus an error term e_{k}.

$$
p_{0}^{\prime}=p_{0}+e \quad \text { and } \quad e_{k}=p_{N+k}+p_{2 N+k}+p_{3 N+k}+\ldots
$$

If N is large e_{k} can be made very small.
Ex: 5.35 X : geometric R.V. Find N such that percent error is 1%.
Recall that: $p_{k}=(1-p) p^{k}$

$$
\begin{aligned}
& e_{k}=\sum_{h=1}^{\infty} p_{k+h N}=\sum_{h=1}^{\infty}(1-p) p^{k+h N}=(1-p) p^{k} \frac{p^{N}}{1-p^{N}} \\
& \% \text { error }=\frac{e_{k}}{p_{k}}=\frac{p^{N}}{1-p^{N}}=a \cdot 100 \% \\
& \frac{p^{N}}{1-p^{N}} \leq 0.01 \Rightarrow 100 p^{N} \leq 1-p^{N} \Rightarrow 101 p^{N} \leq 1 \\
& \Rightarrow p^{N} \leq \frac{1}{101} \Rightarrow N \log p \leq-2 \\
& N>\frac{-2}{\log p} \quad \ggg \text { Sign change because of } p<1 \text { and } \log p<0
\end{aligned}
$$

Example:

Continuous R.V.:

$f_{X}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \Phi_{X}(w) e^{-j w x} d w \approx \frac{1}{2 \pi} \sum_{m=-M}^{M-1} \Phi_{X}\left(m w_{0}\right) e^{-j \frac{2 \pi n m}{N}} \quad$ for $-M \leq n \leq M-1$
and

$$
c_{m}=\frac{w_{0}}{2 \pi} \Phi_{X}\left(m w_{0}\right)
$$

See Ex: 5.36 for $\mathrm{N}=512$ p. 315
\#5.1 $\mathrm{U}=\mathrm{X}+\mathrm{Y}+\mathrm{Z} \quad \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ zero-mean, $\sigma^{2}=1$

$$
\operatorname{COV}(X, Y)=1 / 4 \quad \operatorname{COV}(Y, Z)=-1 / 4 \quad \operatorname{COV}(X, Z)=0
$$

a) Find mean $\&$ variance

$$
\begin{aligned}
& \mathrm{E}[\mathrm{U}]=\mathrm{E}[\mathrm{X}+\mathrm{Y}+\mathrm{Z}]=\mathrm{E}[\mathrm{X}]+\mathrm{E}[\mathrm{Y}]+\mathrm{E}[\mathrm{Z}]=0 \\
& \sigma_{\mathrm{U}}^{2}=\sigma_{\mathrm{X}}^{2}+{\sigma_{\mathrm{Y}}}^{2}+\sigma_{\mathrm{Z}}^{2}+2 \mathrm{COV}(\mathrm{X}, \mathrm{Y})+2 \mathrm{COV}(\mathrm{X}, \mathrm{Z})+2 \mathrm{COV}(\mathrm{Y}, \mathrm{Z}) \\
& =1+1+1+2(1 / 4)+2(0)+2(-1 / 4)=3
\end{aligned}
$$

b) $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are uncorrelated

$$
\begin{aligned}
& \mathrm{E}[\mathrm{U}]=0 \\
& \sigma_{U}^{2}=\sigma_{X}^{2}+\sigma_{Y}^{2}+\sigma_{Z}^{2}+0+0+0=3
\end{aligned}
$$

\#5.3 $\quad \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ are R.V. with identical μ and $\operatorname{Cov}\left(X_{i}, Y_{j}\right)=\sigma^{2} . \rho^{|i-j|}$. If $|\rho|<1$ find $E\left[S_{n}\right]$ and $\sigma_{S_{n}}^{2}$

$$
E\left[S_{n}\right]=n . \mu
$$

Covariance Matrix is a Toeplitz matrix.

$$
K=\left[\begin{array}{ccccc}
\sigma^{2} & \rho \sigma^{2} & \rho^{2} \sigma^{2} & \cdots & \rho^{n-1} \sigma^{2} \\
\rho \sigma^{2} & \sigma^{2} & \rho \sigma^{2} & \cdots & \rho^{n-2} \sigma^{2} \\
\vdots & & & & \\
& & & & \\
\rho^{n-1} \sigma^{2} & & \cdots & & \sigma^{2}
\end{array}\right]
$$

and

$$
\begin{aligned}
\sigma_{S_{n}}^{2} & =n \sigma^{2}+2 \rho \sigma^{2} \sum_{j=1}^{n-1} \sum_{k=0}^{j-1} \rho^{k}=n \sigma^{2}+2 \rho \sigma^{2} \sum_{j=1}^{n-1} \frac{1-\rho^{j}}{1-\rho} \\
& =n \sigma^{2}+2 \rho \sigma^{2}\left[\frac{n-1}{1-\rho}-\left(\frac{\rho}{1-\rho}\right) \frac{1-\rho^{n-1}}{1-\rho}\right]
\end{aligned}
$$

