Chapter 3: Random Variables

Consider an Experiment with a Sample space S with outcomes ξ

- A random variable X is a function that maps each outcome of an experiment to a real number $\mathrm{X}(\zeta)$.
- S is the domain of x and the set S_{x} is the ensemble of all values taken by X and called range of X

Ex: 3.3 Consider coin-tossing, where $\{\mathrm{X}=\mathrm{k}\}=\{\mathrm{k}$ heads in 3 coin tosses $\}$ $\mathrm{S}=\{\mathrm{hhh}, \ldots, \mathrm{ttt}\} \mathrm{S}_{\mathrm{x}}=\{0,1,2,3\}$
$P_{0}=P[x=0]=(1-p)^{3} \quad$ since $P\{T T T\}=(1-p)^{3}$
$P_{1}=P[x=1]=3(1-p)^{2} p$
$\mathrm{P}_{2}=\mathrm{P}[\mathrm{x}=2]=3(1-\mathrm{p}) \mathrm{p}^{2}$
$\mathrm{P}_{3}=\mathrm{P}[\mathrm{x}=3]=\mathrm{p}^{3}$

- If A is the set of outcomes ξ in S that lead to values $X(\xi)$ in $B: A=\{\xi$: $X(\xi)$ in B\}, then B in S_{x} occurs whenever A in S occurs. Then

$$
\mathrm{P}(\mathrm{~B})=\mathrm{P}(\mathrm{~A})=\mathrm{P}[\{\xi: \mathrm{X}(\xi) \text { in } \mathrm{B}\}]
$$

and A and B are equivalent events in different spaces.

Cumulative Distribution/Probability Density Functions

Cumulative Distribution Function (cdf) of X is defined by:

$$
F_{X}(x)=P[X \leq x] \text { for }-\infty<x<\infty
$$

Probability Density Function (pdf) is defined as:

$$
f_{X}(x)=\frac{d F_{X}(x)}{d x}
$$

Both cdf : $F_{x}(x)$ and pdf $f_{x}(x)$ are functions of the real variable x.

Axioms and Properties:

1. $0 \leq \mathrm{F}_{\mathrm{x}}(\mathrm{x}) \leq 1$ and $\quad f_{\mathrm{x}}(\mathrm{x}) \geq 0$
2. $\lim _{x \rightarrow \infty} F_{X}(\mathrm{x})=1$ and $\int_{-\infty}^{\infty} f_{X}(\mathrm{x}) d \mathrm{x}=1$
3. $\lim _{x \rightarrow-\infty} F_{X}(\mathrm{x})=0$ and $F_{X}(x)=\int_{-\infty}^{x} f\left(x^{\prime}\right) d x^{\prime}$
4. $F_{x}(x)$ is a non-decreasing function of \mathbf{x}, in other words
$a<b$ then: $F_{x}(a) \leq F_{x}(b)$ and $P[a \leq X \leq b]=P[X=a\}+P[a<X \leq b]=\int_{a}^{b} f_{X}(x) d x$
5. $F_{x}(x)$ is continuous from the right, in other words for $h>0$

$$
F_{X}(b)=\lim _{h \rightarrow 0} F_{X}(b+h)=F_{X}\left(b^{+}\right)
$$

6. $\quad P[a<X \leq b]=F_{x}(b)-F_{x}(a)$
7. $P[b-\varepsilon<X \leq b]=F_{x}(b)-F_{x}\left(b^{-}\right)$

If $\varepsilon \rightarrow 0$ then $P[X=b]=F_{x}(b)-F_{x}\left(b^{-}\right)$
and if cdf is continuous at $x=b$, then $\{X=b\}$ has probability zero.
8. Correlary 1: $P[X>x]=1-F_{x}(x)$

Ex: 3.4 and 3.5 Tossing 3 coins and $\{x\}=\{\#$ of heads $\}$

Near $\mathrm{x}=1$ let $\delta>0$, small then

$$
\mathrm{F}_{\mathrm{x}}(1-\delta)=\mathrm{P}[\mathrm{X} \leq 1-\delta]=\mathrm{P}\{0 \text { heads }\}=1 / 8
$$

But: $\quad \mathrm{F}_{\mathrm{x}}(1)=\mathrm{P}[\mathrm{X} \leq 1]=\mathrm{P}\{0$ or 1 heads $\}=1 / 8+3 / 8=1 / 2$
and $\quad \mathrm{F}_{\mathrm{x}}(1+\delta)=\mathrm{P}[\mathrm{X} \leq 1+\delta]=\mathrm{P}\{0$ or 1 heads $\}=1 / 2$
cdf can be written in terms of unit step functions when there are discontinuities:

$$
\mathrm{F}_{\mathrm{x}}(\mathrm{x})=(1 / 8) \mathrm{u}(\mathrm{x})+(3 / 8) \mathrm{u}(\mathrm{x}-1)+(3 / 8) \mathrm{u}(\mathrm{x}-2)+(1 / 8) \mathrm{u}(\mathrm{x}-3)
$$

pdf can be written in terms of $\delta(\cdot)$ function for discrete prob. events:

$$
f_{\mathrm{x}}(\mathrm{x})=(1 / 8) \delta(\mathrm{x})+(3 / 8) \delta(\mathrm{x}-1)+(3 / 8) \delta(\mathrm{x}-2)+(1 / 8) \delta(\mathrm{x}-3)
$$

and

$$
P[1<X \leq 2]=\int_{1^{+}}^{2} f_{X}(\mathrm{x}) d \mathrm{x}=\frac{3}{8} \quad P[2 \leq X<3]=\int_{2}^{3^{-}} f_{X}(\mathrm{x}) d \mathrm{x}=\frac{3}{8}
$$

Ex: 3.5 Transmission time X in a communication system obeys

$$
\begin{aligned}
& P(X>x)=e^{-\lambda x} \quad x>0 \text { and } \lambda=\text { rate }=1 / T \\
\text { cdf: } & F_{X}(x)=P[X \leq x]=1-P[X>x]=\left\{\begin{array}{cc}
1-e^{-\lambda x} & \text { if } x>0 \\
0 & \text { if } x<0
\end{array}\right.
\end{aligned}
$$

Find:

$$
\mathrm{P}[\mathrm{~T}<\mathrm{X} \leq 2 \mathrm{~T}]=\left(1-\mathrm{e}^{-2}\right)-\left(1-\mathrm{e}^{-1}\right)=\mathrm{e}^{-1}-\mathrm{e}^{-2} \approx 0.233
$$

$$
F^{\prime}(x)=\left\{\begin{array}{cc}
\lambda \cdot e^{-\lambda x} & x>0 \\
0 & x<0
\end{array}\right.
$$

$$
\text { and pdf: } f_{\mathrm{x}}(\mathrm{x})
$$

Discrete r.v. are described by prob. mass function (pmf) of X as the set of probabilities

$$
p_{X}(x)=P\left[X=x_{k}\right] \text { in } S_{x} .
$$

cdf for discrete r.v.: $\quad F_{X}(x)=\sum_{k} p_{X}(x) u\left(x-x_{k}\right)$
Continuous r.v. is a r.v. with a continuous cdf and the cdf is equal to the area under the pdf curve upto the point $\mathrm{x}: \quad F_{X}(x)=\int_{-\infty}^{x} f_{\chi}(x) d x$
Mixed r.v. has a cdf with jumps on a countable set of points but also increase continuously over at least on one interval. cdf :

Cdf of discrete r.v. cdf of cont. r.v.
R.V. Examples: Discrete: p. 100

α : ave. \# of occurrances in a specified time unit (fig 3.10 for pmf)

Remarks on Discrete Distributions of Table 3.1

1) cdf of geometric r.v.

$$
\begin{aligned}
& P[M \leq k]=\sum_{j=1}^{k} p q^{j-1}=p \sum_{l=0}^{k-1} q^{l}=p \frac{1-q^{k}}{1-q}=1-q^{k} \\
& P[N=k]=P[M \geq k+1]=(1-p)^{k} p \quad k=0,1,2, \ldots
\end{aligned}
$$

Let $\mathrm{N}=\mathrm{M}-1 \quad$ \# of failures before a success occurs, then
Geometric r.v. satisfies memoryless property:

$$
P[M \geq k+j \mid m>j]=P[M \geq k] \quad \text { for all } j, k>1
$$

Thus, each time a failure occurs, the system forgets and begins anew as if it were performing first trial. It occurs in queuing system models.
2) pmf of Poisson r.v. sums to 1 :

$$
\begin{gathered}
\sum_{k=0}^{\infty} \frac{\alpha^{k}}{k!} e^{-\alpha}=e^{-\alpha} \sum_{k=0}^{\infty} \frac{\alpha^{k}}{k!}=e^{-\alpha} e^{\alpha}=1 \\
p_{k}=\binom{n}{k} p^{k}(1-p)^{n-k} \approx \frac{\alpha^{k}}{k!} e^{-\alpha} \quad \text { for } k=0,1, \ldots
\end{gathered}
$$

Law of large numbers for Bernoulli trials: If n is large and $p>0$ small, then for $\alpha \equiv n p$
Ex: 3.11 Given $p_{e}=10^{-3}$ Find a packet of 1000 bits that has ≥ 5 errors
Since this is a Bernoulli trial with $n=1000, p=10^{-3}$ Poisson approximation:

$$
\begin{array}{rlrl}
P[N \geq 5] & =1-P[N<5] & & \text { Since } \alpha \equiv \mathrm{np} \\
& =1-\sum_{k=0}^{4} \frac{\alpha^{k}}{k!} e^{-\alpha}=1-e^{-1}\left\{1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}\right\} & & =1000\left(10^{-3}\right) \\
& =0.00366 &
\end{array}
$$

Table 3.2 Continuous r.v. p. 101

Uniform Random Variable

$S_{X}=[a, b]$
$f_{X}(x)=\frac{1}{b-a} \quad a \leq x \leq b$
$E[X]=\frac{a+b}{2} \quad \operatorname{VAR}[X]=\frac{(b-a)^{2}}{12}$
$\Phi_{X}(\omega)=\frac{e^{j \omega b}-e^{j \omega \alpha}}{j \omega(b-a)}$

Exponential Random Variable

$S_{X}=[0, \infty)$
$f_{X}(x)=\lambda e^{-\lambda x} \quad x \geq 0 \quad$ and $\lambda>0$
$E[X]=\frac{1}{\lambda} \quad \operatorname{VAR}[X]=\frac{1}{\lambda^{2}}$
$\Phi_{X}(\omega)=\frac{\lambda}{\lambda-j \omega}$
Remarks: The exponential random variable is the only continuous random variable with the memoryless property.

Gaussian (Normal) Random Variable

$S_{X}=(-\infty,+\infty)$
$f_{X}(x)=\frac{e^{-(x-m)^{2} / 2 \sigma^{2}}}{\sqrt{2 \pi} \sigma} \quad-\infty<x<+\infty \quad$ and $\quad \sigma>0$
$E[X]=m \quad \operatorname{VAR}[X]=\sigma^{2}$
$\Phi_{X}(\omega)=e^{j m \omega-\sigma^{2} \omega^{2} / 2}$
Remarks: Under a wide range of conditions, X can be used to approximate the sum of a large number of independent random variables.

Cumulative Distribution for Exponential Function

$$
\operatorname{cdf} \mathrm{F}_{\mathrm{x}}(\mathrm{x})= \begin{cases}0 & \text { if } \mathrm{x}<0 \\ 1-\mathrm{e}^{-\lambda x} & \text { if } \mathrm{x} \geq 0\end{cases}
$$

Table 3.2 Continued

Gamma Random Variable

$S_{X}=(0,+\infty)$
$f_{X}(x)=\frac{\lambda(\lambda x)^{\alpha-1} e^{-\lambda x}}{\Gamma(\alpha)} \quad x>0$ and $\quad \alpha>0, \lambda>0$
where $\Gamma(z)$ is the gamma function (Eq. 3.46).
$E[X]=\alpha / \lambda \quad \operatorname{VAR}[X]=\alpha / \lambda^{2}$
$\Phi_{X}(\omega)=\frac{1}{(1-j \omega / \lambda)^{\alpha}}$

Gamma Function:

$\Gamma(z)=\int_{0}^{\infty} x^{z-1} . e^{-x} d x \quad$ if $z>0$
with properties:

$$
\begin{aligned}
& \Gamma(0.5)=\sqrt{\pi} \\
& \Gamma(z+1)=z \Gamma(z) \quad \text { for } \quad z>0 \\
& \Gamma(m+1)=m!
\end{aligned}
$$

Special Cases of Gamma Random Variable
m-Erlang Random Variable: $\alpha=m$, a positive integer
$f_{X}(x)=\frac{\lambda e^{-\lambda x}(\lambda x)^{m-1}}{(m-1)!} \quad x>0$
$\Phi_{X}(\omega)=\left(\frac{\lambda}{\lambda-j \omega}\right)^{m}$
Remarks: An m-Erlang random variable is obtained by adding m independent exponentially distributed random variables with parameter λ.
Chi-Square Random Variable with k degrees of freedom: $\alpha=k / 2, k$ a positive integer and $\lambda=\frac{1}{2}$
$f_{X}(x)=\frac{x^{(k-2) / 2} e^{-x / 2}}{2^{k / 2} \Gamma(k / 2)} \quad x>0$
$\Phi_{X}(\omega)=\left(\frac{1}{1-j 2 \omega}\right)^{k / 2}$
Remarks: The sum of k mutually independent, squared zero-mean unit-variance Gaussian random variables is a chi-square random variable with k degrees of freedom.

Rayleigh Random Variable

$S_{X}=[0, \infty)$
$f_{X}(x)=\frac{x}{\alpha^{2}} e^{-x^{2} / 2 \alpha^{2}} \quad x \geq 0 \quad \alpha>0$
$E[X]=\alpha \sqrt{\pi / 2} \quad \operatorname{VAR}[X]=(2-\pi / 2) \alpha^{2}$

Cauchy Random Variable

$S_{X}=(-\infty, \infty)$
$f_{X}(x)=\frac{\alpha / \pi}{x^{2}+\alpha^{2}} \quad-\infty<x<\infty \quad \alpha>0$
Mean and variance do not exist.
$\Phi_{X}(\omega)=e^{-\alpha|\omega|}$

Laplacian Random Variable

$S_{X}=(-\infty, \infty)$
$f_{X}(x)=\frac{\alpha}{2} e^{-\alpha|x|} \quad-\infty<x<\infty \quad \alpha>0$
$E[X]=0 \quad \operatorname{VAR}[X]=2 / \alpha^{2}$
$\Phi_{X}(\omega)=\frac{\alpha^{2}}{\omega^{2}+\alpha^{2}}$

Remarks on Continuous r.v.

1. See Fig 3.12 as a limiting behavior for cdf of a discrete r.v. \rightarrow uniform cont. r.v.
2. Exp. r.v. is a limiting form of geometric r.v. (Fig. 3.10.a)
\# of subintervals until the occurrence of an event $\mathrm{X}=\mathrm{MT} / \mathrm{n}$
where M: geo. r.v., n: \#of Bernoulli trials, T: time interval

$$
P[M>t]=P\left[M>n \frac{t}{T}\right]=[1-p]^{\frac{n t}{T}}=\left[\left(1-\frac{\alpha}{n}\right)^{n}\right]^{\frac{t}{T}} \rightarrow e^{\frac{-\alpha t}{T}} \quad \text { as } n \rightarrow \infty
$$

3. Exp. r.v. satisfies the memoryless property: $P[X>t+h \mid X>t]=P[X>h]$

Proof:

$$
\begin{aligned}
P[X>t+h \mid X>t] & =\frac{P[(X .>t+h) \cap(X>t)]}{P[X>t]} \quad \text { for } h>0 \\
& =\frac{P[X>t+h]}{P[X>t]}=\frac{e^{-\lambda(t+h)}}{e^{-\lambda t}}=e^{-\lambda h}=P[X>h]
\end{aligned}
$$

4. cdf of Gaussian r.v.: If x ' is the dummy integration variable:

Standard Gaussian r.v. $\quad N\left(\mathrm{~m}=0, \sigma^{2}=1\right)$

5. Q-Function

$$
Q(x)=1-\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-t^{2}} d t \quad \text { Tail area of the pdf. }
$$

with $Q(0)=\frac{1}{2}$ and $Q(-x)=1-Q(x) \quad$ (Study Table 3.3, 3.4)
Table: 3.4 "Value of \mathbf{x} for which $\mathrm{Q}(\mathrm{x})=10^{-\mathrm{k}}$ "
Approximation for the Q-function:

$$
Q(x) \approx\left[\frac{1}{(1-a) x+a \sqrt{x^{2}+b}}\right] \frac{1}{\sqrt{2 \pi}} e^{\frac{-x^{2}}{2}} \quad a=\frac{1}{\pi} ; \quad b=2 \pi
$$

Ex: 3.15

$$
\alpha=10^{-2}
$$

Signal out: $Y=\alpha V+N \quad N=N\left(m=0, \sigma^{2}=4\right)$ Gaussian
Find V such that $\mathrm{P}[\mathrm{Y}<0]=10^{-6}$

$$
\begin{aligned}
P[Y<0]= & P[\alpha V+N<0]=P[N<-\alpha V] \\
= & \Phi\left(\frac{-\alpha V}{\sigma}\right)=Q\left(\frac{\alpha V}{\sigma}\right)=10^{-6} \\
\frac{\alpha V}{\sigma}=\frac{\left(10^{-2}\right) N}{2} \Rightarrow & 10^{-6} \rightarrow k=4.753 \\
& V=(4.753) \frac{2}{10^{-2}}=950.6 \text { volts }
\end{aligned}
$$

6) Gamma RV. Pdf

Exponential case: $\alpha=1$

Chi-square case:
$\lambda=1 / 2$ and $\alpha=\mathrm{k} / 2$ with $\mathrm{k}>0$ integer

Functions of Single RandomVariable

Define a new r.v. such that: $\quad Y=q(X)$
Task: Find pdf and cdf of Y in terms of those from r.v. X.

Ex: 3.19 Uniform quantizer: (8-level)
X : input signal to the quantizer and $\mathrm{Y}=\mathrm{q}(\mathrm{x})$: quantized output
$S_{y}=\{-3.5 d,-2.5 d,-1.5 d,-0.5 d, 0.5 d, 1.5 d, 2.5 d, 3.5 d\}$
Rule: All points in the interval $(0, d)$ are mapped to: $q(x)=d / 2$

PROCESSING RULE: $\mathbf{P}[\mathbf{Y}$ in $\mathbf{C}]=\mathbf{P}[\mathbf{q}(\mathrm{x})$ in $\mathbf{C}]=\mathbf{P}[\mathrm{X}$ in B$]$, where \mathbf{C} and B are equivalent events in S_{y}, S_{x}

Ex: 3.22 Quantizing Speech samples into 3-bits uniform quantizer
Given X is uniform in $[-4 \mathrm{~d}, 4 \mathrm{~d}]$ and $\mathrm{Y}=\mathrm{q}(\mathrm{X})$. Find $p m f$ for the quantized signal Y . The event $\left\{\mathrm{Y}=\mathrm{q} ; \mathrm{q} \in \mathrm{S}_{\mathrm{y}}\right\}$ is equivalent to $\left\{\mathrm{X}\right.$ in $\left.\mathrm{I}_{\mathrm{q}}\right\}$ where I_{q} is a group of samples mapped into a representation point q .
pmf for $\mathbf{Y}: P[y=q]=\int_{I_{q}} f_{x}(t) d t=\frac{1}{8} \quad$ Note: 8 outputs are equiprobable.

Ex: 3.23 Let $Y=a X+b \quad$ with $F_{X}(x)$ and $a \neq 0$
Find: $F_{Y}(y)$

$$
\begin{aligned}
& \{\mathrm{Y} \leq \mathrm{y}\} \text { occurs when } \\
& \mathrm{A}=\{\mathrm{aX}+\mathrm{b} \leq \mathrm{y}\} \text { occurs. }
\end{aligned}
$$

1. If $a>0$ then $A=\left\{X \leq \frac{y-b}{a}\right\}$ and the cdf is written as:

$$
F_{Y}(y)=P\left[X \leq \frac{y-b}{a}\right]=F_{X}\left(\frac{y-b}{a}\right) \quad \text { for } a>0
$$

2. If $\mathrm{a}<0$ then $\quad A=\left\{X>\frac{y-b}{a}\right\}$

$$
F_{Y}(y)=P\left[X \geq \frac{y-b}{a}\right]=1-F_{X}\left(\frac{y-b}{a}\right)
$$

pdf: Using the derivative rule: $\frac{d F}{d y}=\frac{d F}{d u} \frac{d u}{d y}$ and $u=\frac{y-b}{a}$; we obtain:

$$
f_{Y}(y)=\left\{\begin{array}{cc}
\frac{1}{a} f_{X}\left(\frac{y-b}{a}\right) & \text { if } a>0 \\
-\frac{1}{a} f_{X}\left(\frac{y-b}{a}\right) & \text { if } a<0
\end{array} \quad=\frac{1}{|a|} f_{X}\left(\frac{y-b}{a}\right)\right.
$$

Ex: 3.24 Given X with a Gaussian pdf: $N\left(m, \sigma^{2}\right)$ and $Y=a X+b$. Find $f_{y}(y)$
$f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-m)^{2} / 2 \sigma^{2}}-\infty<x<\infty$ and $f_{Y}(y)=\frac{1}{\sqrt{2 \pi} \mid a \sigma} \frac{1}{} e^{-(y-b-a m)^{2} / 2(a \sigma)^{2}}$
It is also a Gaussian r.v. with mean $b+a m$ and st.dev. $|a| \sigma$

Ex: 3.25 Given: $\mathrm{Y}=\mathrm{X}^{2}$; find cdf and pdf of Y
$\{Y \leq y\}$ is equivalent to saying: $X^{2} \leq y$ and $-\sqrt{y} \leq X \leq \sqrt{y} \quad$ for $y>0$.

This results in a cdf:

$$
\begin{aligned}
& F_{Y}(y)=\left\{\begin{array}{cc}
F_{X}(\sqrt{y})-F_{X}(-\sqrt{y}) & \text { if } y>0 \\
0 & \text { if } y \leq 0
\end{array}\right. \\
& \frac{d F_{Y}}{d y} \Rightarrow f_{Y}(y)=\left\{\begin{array}{cc}
\frac{f f_{X}(\sqrt{y})}{2 \sqrt{y}}-\frac{f_{X}(-\sqrt{y})}{-2 \sqrt{y}} & y>0 \\
0 & y \leq 0
\end{array}\right.
\end{aligned}
$$

Multiple Roots Case: $\quad \mathrm{Y}=\mathrm{g}(\mathrm{X}) \quad \mathrm{C}_{\mathrm{y}}=\{\mathrm{y}<\mathrm{Y} \leq \mathrm{y}+\mathrm{dy}\}$
In this case, $\mathrm{g}(\mathrm{x})=\mathrm{y}$ has multiple solutions: $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots$

B_{y} has equivalent events: $\mathrm{B}_{\mathrm{y}}=\left\{\mathrm{x}_{1}<\mathrm{X}<\mathrm{x}_{1}+\mathrm{dx}_{1} \cup \ldots \cup \mathrm{x}_{3}<\mathrm{X}<\mathrm{x}_{3}+\mathrm{dx}_{3}\right\}$

$$
P\left[C_{y}\right]=f_{y}(y)|d y| \Rightarrow P\left[B_{y}\right]=f_{x}\left(x_{1}\right)\left|d x_{1}\right|+f_{x}\left(x_{2}\right)\left|d x_{2}\right|+f_{x}\left(x_{3}\right)\left|d x_{3}\right|
$$

Ex: 3.28: Samples of a sinusoid. Let $\mathrm{Y}=\cos (\mathrm{x})$ and X is uniform in $(0,2 \pi)$. Find pdf and cdf of Y?

Since X is uniform we know that: $f_{X}(x)=\left\{\begin{array}{cl}\frac{1}{2 \pi} & 0<x<2 \pi \\ 0 & \text { Otherwise }\end{array}\right.$

When $0<x<2 \pi$
We have,
$-1<y<1$
$y=\cos (x) \Rightarrow \begin{aligned} & x_{0}=\cos ^{-1}(y) \\ & x_{1}=2 \pi-x_{0}\end{aligned}$

But

$$
\left.\frac{d y}{d x}\right|_{x_{0}}=-\sin \left(x_{0}\right)=-\sin \left(\cos ^{-1}(y)\right)=-\sqrt{1-y^{2}}
$$

which results in a pfd:

$$
f_{Y}(y)=\frac{1 / 2 \pi}{\sqrt{1-y^{2}}}+\frac{1 / 2 \pi}{\sqrt{1-(-y)^{2}}}=\frac{1 / \pi}{\sqrt{1-y^{2}}} \text { for }-1<y<1
$$

cdf becomes an arcsine distribution:

$$
F_{Y}(y)=\int_{-\infty}^{y} f_{y}\left(y^{\prime}\right) d y^{\prime}=\left\{\begin{array}{cc}
0 & \text { if } y<-1 \\
\frac{1}{2}+\frac{\sin ^{-1} y}{\pi} & \text { if }-1 \leq y \leq 1 \\
1 \quad & \text { if } y>1
\end{array}\right.
$$

Expected values:

Expected Value (mean): $E[X]=\int_{\infty} t . f_{X}(t) d t \quad E[X]=\sum_{\infty} x_{k} \cdot P_{X}\left(x_{k}\right)$ The mean exists if

$$
E[X]=\int_{-\infty}^{\infty}|t| f_{X}(t) d t<\infty \quad \text { or } \quad E[|X|]=\sum_{k}\left|x_{k}\right| P_{X}\left(x_{k}\right)<\infty
$$

Top curve varies around 5.0 and wide spread

Bottom curve varies around 0.0 and little cnrast

FIGURE 3.20
Thestrapts stom 150 repetians ditteecerinatts pialding tha rendanvatiatle Y lt is cles fital Itaks enuabss centerad about tevele 5 vhie ${ }^{Y}$ taks on vales comerss atoc:0. It is outhan Y

Ex: 3.29 Uniform r.v. - pdf/mean

$$
\begin{aligned}
& f_{X}(x)=\left\{\begin{array}{cl}
\frac{1}{b-a} & a \leq x \leq b \\
0 & \text { Otherwise }
\end{array}\right. \\
& E[X]=\frac{1}{b-a} \int_{a}^{b} t d t=\left.\frac{1}{b-a} \frac{t^{2}}{2}\right|_{a} ^{b}=\frac{b^{2}-a^{2}}{2(b-a)}=\frac{a+b}{2}
\end{aligned}
$$

Notes: If $X \geq 0$, then

$$
\begin{aligned}
& E[X]=\int_{0}^{\infty}\left(1-F_{X}(t) d t \quad \text { if } x:\right. \text { continuous } \\
& E[X]=\sum_{k=0}^{\infty} P[X>k] \quad \text { if } k: \text { discrete } .
\end{aligned}
$$

Ex: 3.31 Inter-arrival time average. $f_{\mathbf{x}}(\mathrm{x})$ is exponential with λ and $1 / \lambda$ seconds per customer:

$$
E[X]=\int_{0}^{\infty} t \lambda e^{-\lambda t} d t=-\left.t e^{-\lambda t}\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-\lambda t} d t
$$

When we use the integration by parts with the terminology:

$$
\int u d v=u v-\int v d u \quad u=t, \quad d v=\lambda e^{-\lambda t} d t
$$

which results with the expected value:

$$
E[X]=\lim _{t \rightarrow \infty} t e^{-\lambda t}-0+\left.\frac{-e^{-\lambda t}}{\lambda}\right|_{0} ^{\infty}=\frac{1}{\lambda}
$$

Variance and standard deviation of X :

$$
\begin{aligned}
& \sigma_{X}^{2}=\operatorname{VAR}[X]=E[X-E[X]]^{2} \\
& \sigma_{X}=\operatorname{STD}[X]=\sqrt{\operatorname{VAR}[X]}
\end{aligned}
$$

In practice we use a slightly different version for the variance expression:

$$
\sigma_{X}^{2}=E\left[X^{2}-2 X E[X]+E[X]^{2}\right]=E\left[X^{2}\right]-E[X]^{2}
$$

Ex: 3.36 Variance of uniform r.v. X for $\mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$

$$
\begin{aligned}
\sigma_{x}^{2} & =\int_{a}^{b} \frac{1}{b-a}\left(x-\frac{a+b}{2}\right)^{2} d x=\left(\frac{1}{b-a}\right) \cdot \int_{-(b-a) / 2}^{(b-a) / 2} y^{2} d y \\
& =\frac{(b-a)^{3}}{12(b-a)}=\frac{(b-a)^{2}}{12}
\end{aligned}
$$

In the above integral we have used a change of variable: $\quad y=x-\frac{a+b}{2} \quad d y=d x$
Ex: 3.38 Variance of a Gaussian r.v.
which can be re-written by differentiating with respect to: σ_{x}

$$
\int_{-\infty}^{\infty} \frac{(x-m)^{2}}{\sigma_{x}^{3}} e^{-\frac{(x-m)^{2}}{2 \sigma_{x}^{2}}} d x=\sqrt{2 \pi}
$$

Let us re-arrange this result to obtain the expression for the variance:

$$
\sigma_{x}^{2}=\frac{1}{\sqrt{2 \pi} \sigma_{x}} \cdot\left(\int_{-\infty}^{\infty}(x-m)^{2} e^{\left.-\frac{(x-m)^{2}}{2 \sigma_{x}^{2}} d x\right)}\right.
$$

Notes: 1) $\operatorname{VAR}[\mathrm{C}]=0$
2) $\operatorname{VAR}[\mathrm{X}+\mathrm{C}]=\operatorname{VAR}[\mathrm{X}]$
3) $\operatorname{VAR}[C X]=C^{2} \operatorname{VAR}[X]$
4) $E\left[X^{n}\right]=\int_{-\infty}^{\infty} x^{n} f_{x}(x) d x \quad n^{\text {th }}$ moment of r.v. X

Ex: 3.39 Uniform Quantizer: $X \Rightarrow q(X)$ from 2^{R} levels (R-bit) with a Quantizing Noise: Z = X-q(X)

Using

$$
E[Z]=\frac{d / 2-d / 2}{2}=0 \quad \text { (Zero-mean) and } \quad \operatorname{VAR}[Z]=\frac{[d / 2-(-d / 2)]^{2}}{12}=\frac{d^{2}}{12}
$$

Recall:

$$
\mathrm{X}-\mathrm{Z}=\mathrm{q}(\mathrm{x})
$$

Signal-Quantizing Noise Ratio:

$$
S N R=\frac{\operatorname{VAR}[X]}{\operatorname{VAR}[Z]}=\frac{\operatorname{VAR}[X]}{d^{2} / 12}=3 \frac{\operatorname{VAR}[X]}{x_{\max }^{2}} 2^{2 R}
$$

However, almost always, we express the SNR in decibels (dB)

$$
S N R_{d B}=10 \log _{10} S N R \approx 6 R-7.3 d B
$$

In the last approximation, we have used the industry standard: $x_{\text {max }}=4 \sigma_{x}$ known as the 4 -sigma loading condition.
Each additional bit doubles the number of quantizer levels and the step size d is reduced by a factor of $2 \Rightarrow \operatorname{VAR}[Z]$ will be reduced by $2^{2}=4$

MARKOV and CHEBYSHEV INEQUALITIES

Let $\mathrm{X} \geq 0$ and mean $=\mathrm{E}[\mathrm{X}]$, then the Markov Inequality is written by

$$
P[X \geq a] \leq \frac{E[X]}{a} \quad \text { for } x \geq a
$$

$$
E[X]=\int_{0}^{a} t f_{X}(t) d t+\int_{a}^{\infty} t f_{X}(t) d t \geq \int_{a}^{\infty} t f_{X}(t) d t \geq \int_{a}^{\infty} a f_{X}(t) d t
$$

which result in:

$$
\begin{aligned}
& E[X] \geq a \int_{a}^{\infty} f_{X}(t) d t=a P[X \geq a] \\
& \Rightarrow P[X \geq a] \leq \frac{E[X]}{a}
\end{aligned}
$$

Let X have a mean m and $\operatorname{VAR}[X]=\sigma_{X}^{2}$ then

$$
\begin{aligned}
P[X-m \mid \geq a] & =P[-a \geq X-m \geq a] \\
& =P[-a+m \geq X \geq a+m] \leq \frac{\sigma_{X}^{2}}{a^{2}}
\end{aligned}
$$

Chebyshev

Inequality

Ex: 3.41 For a response time $=15 \mathrm{~s}$.
St. dev. of resp. time $=3 \mathrm{~s}$.
Find prob. that the response time $>5 \mathrm{~s}$. from mean

$$
\begin{aligned}
& \mathrm{m}=15 \mathrm{~s} . \quad \sigma=3 \mathrm{~s} . \quad \mathrm{a}=5 \\
& P[|X-15| \geq 5] \leq \frac{9}{25}=0.36
\end{aligned}
$$

(Skip 3.8 Fit of Distr. Of Data)

Characteristic and Probability Generating Functions

Characteristic function:

$$
\Phi_{X}(w)=E\left[e^{j w X}\right]=\int_{-\infty}^{\infty} f_{X}(x) e^{j w X} d x
$$

1) $\quad \Phi_{X}(w)$ is the expected value of a fn of $X: g(X)=e^{j w X} \mathrm{~g}(\mathrm{x})=\mathrm{e}^{\mathrm{jwX}}$
2) $\quad \Phi_{X}(w)$ is the Fourier Tx. of pdf $f_{x}(x)$.

In which case, the inverse Fourier Tx:

$$
f_{X}(x)=\mathfrak{J}^{-1}\left\{\Phi_{X}(w)\right\}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \Phi_{X}(w) e^{-j w X} d w
$$

If X is a discrete r.v. then

$$
\Phi_{X}(w)=\sum_{k} p_{X}\left(x_{k}\right) e^{j w X_{k}}
$$

Furthermore, if X_{k} is integer then:

$$
\Phi_{X}(w)=\sum_{k=-\infty}^{\infty} p_{X}(k) e^{j w k}
$$

which is the Fourier transform of the probability mass function $p(k)$.

Inverse Fourier Tx.:

$$
p_{X}(k)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \Phi_{X}(w) e^{-j w k} d w \quad \text { for } k=0, \pm 1, \pm 2, \ldots
$$

Ex: $3.47 \Phi_{X}(w)$ for the exponential r.v. X:

$$
\begin{aligned}
& f_{X}(x)=\left\{\begin{array}{cc}
\lambda . e^{-\lambda . x} & x \geq 0 \\
0 & x<0
\end{array}\right. \\
& \Phi_{X}(w)=\int_{0}^{\infty} \lambda e^{-\lambda x} e^{j w x} d x=\lambda \int_{0}^{\infty} e^{-(\lambda-j w) x} d x \\
& \Phi_{X}(w)=\frac{\lambda}{\lambda-j w}
\end{aligned}
$$

Ex: $3.48 \Phi_{\mathrm{x}}(\mathrm{w})$ for geometric r.v.

$$
\Phi_{x}(w)=\sum_{k=0}^{\infty} p q^{k} e^{j w k}=p \sum_{k=0}^{\infty}\left(q e^{j w}\right)^{k}=p \frac{1}{1-q e^{j w}}
$$

Moment Generating Function:

$$
E\left[X^{n}\right]=\left.\frac{1}{j^{n}} \frac{d^{n}}{d w^{n}} \Phi_{X}(w)\right|_{w=0}
$$

Proof: Expand characteristic function in a power series expansion:

$$
\begin{aligned}
\Phi_{x}(w) & =\int_{-\infty}^{\infty} f_{x}(x)\left[1+j w x+\frac{(j w x)^{2}}{2!}+\frac{(j w x)^{3}}{3!}+\ldots\right] d x \\
& =1+j w \int_{-\infty}^{\infty} x f_{x}(x) d x+\frac{(j w)^{2}}{2!} \int_{-\infty}^{\infty} x^{2} f_{x}(x) d x+\ldots \\
& =1+j w E[X]+\frac{(j w)^{2}}{2!} E\left[X^{2}\right]+\ldots+\frac{(j w)^{n}}{n!} E\left[X^{n}\right]+\ldots
\end{aligned}
$$

If we differentiate once wrt to w and set $\mathrm{w}=0$

$$
\left.\frac{d}{d w} \Phi_{X}(w)\right|_{w=0}=j E[X] \Rightarrow E[X]=\left.\frac{1}{j} \frac{d}{d w} \Phi_{X}(w)\right|_{w=0}
$$

Differentiate twice and set w = 0 yields

$$
\left.\frac{d^{2}}{d w^{2}} \Phi_{X}(w)\right|_{w=0}=-E\left[X^{2}\right]
$$

Similarly,

$$
\left.\frac{d^{n}}{d w^{n}} \Phi_{x}(w)\right|_{w=0}=j^{n} E\left[X^{n}\right]
$$

Ex: 3.49 Exponential pdf and char. fn: $\Phi_{\chi}(w)=\frac{\lambda}{\lambda-j w}$
Let us differentiate it once:

$$
\Phi_{x}^{\prime}(w)=\frac{\lambda j}{(\lambda-j w)^{2}}
$$

We obtain:

$$
E[X]=\frac{\Phi_{x}^{\prime}(0)}{j}=\frac{1}{\lambda}
$$

Similarly, one more differentiation results in

$$
\begin{aligned}
& \Phi_{x}^{\prime \prime}(w)=\frac{-2 \lambda}{(\lambda-j w)^{3}} \\
& E\left[X^{2}\right]=\frac{\Phi_{x}^{\prime \prime}(0)}{j^{2}}=\frac{-2 \lambda}{-\lambda^{3}}=\frac{2}{\lambda^{2}}
\end{aligned}
$$

Using these two statistics we compute the variance:

$$
\sigma_{x}^{2}=\operatorname{VAR}[X]=E\left[X^{2}\right]-E[X]^{2}=\frac{2}{\lambda^{2}}-\left(\frac{1}{\lambda}\right)^{2}=\frac{1}{\lambda^{2}}
$$

pdf and pmf Generating Functions:

PDF Generating Function:

1) $\quad \mathrm{G}_{\mathrm{N}}(\mathrm{z})$ is the expected value of a function of $\mathrm{N}: g(\mathrm{~N})=\mathrm{z}^{\mathrm{N}}$
2) $\quad \mathrm{G}_{\mathrm{N}}(\mathrm{z})$ is the $\mathrm{z}-\mathrm{Tx}$. of pmf and $\Phi_{\mathrm{N}}(\mathrm{w})=\mathrm{G}_{\mathrm{N}}\left(\mathrm{e}^{\mathrm{jw}}\right)$

Similarly, pmf gen. fn:

$$
p_{N}(k)=\left.\frac{1}{k!} \frac{d^{k}}{d z^{k}} G_{N}(z)\right|_{z=0}
$$

with statistics:

$$
E[N]=\left.\frac{d}{d z} G_{N}(z)\right|_{z=1}=\left.\sum_{k=0}^{\infty} p_{N}(k) k z^{k-1}\right|_{z=1}=\sum_{k=0}^{\infty} k p_{N}(k)=E[N]
$$

and

$$
\begin{gathered}
\left.\frac{d^{2}}{d z^{2}} G_{N}(z)\right|_{z=1}=\left.\sum_{k=0}^{\infty} p_{N}(k) k(k-1) z^{k-1}\right|_{z=1}=\sum_{k=0}^{\infty} k(k-1) p_{N}(k) \\
=E[N(N-1)]=E\left[N^{2}\right]-E[N]
\end{gathered}
$$

Furthermore,

$$
\begin{aligned}
& E[N]=G_{N}^{\prime}(1) \\
& \operatorname{VAR}[N]=G_{N}^{\prime \prime}(1)+G_{N}^{\prime}(1)-\left[G_{N}^{\prime}(1)\right]^{2}
\end{aligned}
$$

Ex: 3.50 Poisson r.v. with parameter α :

$$
G_{N}(z)=\sum_{k=0}^{\infty}\left[\frac{\alpha^{k}}{k!} e^{-\alpha}\right] z^{k}
$$

$$
G_{N}(z)=e^{-\alpha} \sum_{k=0}^{\infty} \frac{(\alpha z)^{k}}{k!}=e^{-\alpha} e^{\alpha Z}=e^{\alpha(Z-1)}
$$

Taking the first two derivatives: $G_{N}^{\prime}(z)=\alpha e^{\alpha(z-1)} ; \quad$ and $\quad G_{N}^{\prime \prime}(z)=\alpha^{2} e^{\alpha(z-1)}$ yields the answer:

$$
E[N]=\alpha \quad \text { and } \quad \operatorname{VAR}[N]=\sigma_{N}^{2}=\alpha^{2}+\alpha-\alpha^{2}=\alpha
$$

Laplace Tx of pdf_(Nonnegative continuous r.v.)

$$
X^{*}(s)=\int_{0}^{\infty} f_{X}(x) e^{-s x} d x=E\left[e^{-s x}\right] \quad \text { and } \quad E\left[X^{n}\right]=\left.(-1)^{n} \frac{d^{n}}{d s^{n}} X^{*}(s)\right|_{s=0}
$$

Ex: 3.51 Laplace Tx method on Gamma pdf:

$$
X^{*}(s)=\int_{0}^{\infty} \frac{\lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}}{\Gamma(\alpha)} e^{-s x} d x=\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} x^{\alpha-1} e^{-(\lambda+s) x} d x
$$

Using the following substitution of variable: $y=\lambda+s$

$$
\begin{aligned}
X^{*}(s) & =\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \frac{1}{(\lambda+s)^{\alpha}} \int_{0}^{\infty} y^{\alpha-1} e^{-y} d y \\
& =\frac{\lambda^{\alpha}}{\Gamma(\alpha)} \frac{1}{(\lambda+s)^{\alpha}} \Gamma(\alpha)=\frac{\lambda^{\alpha}}{(\lambda+s)^{\alpha}}
\end{aligned}
$$

The expected value and the mean-square value:

$$
\begin{aligned}
& E[X]=-\left.\frac{d}{d s} \frac{\lambda^{\alpha}}{(\lambda+s)^{\alpha}}\right|_{s=0}=\left.\frac{\alpha \lambda^{\alpha}}{(\lambda+s)^{\alpha+1}}\right|_{s=0}=\frac{\alpha}{\lambda} \\
& E\left[X^{2}\right]=\left.\frac{d^{2}}{d s^{2}} \frac{\lambda^{\alpha}}{(\lambda+s)^{\alpha}}\right|_{s=0}=\left.\frac{\alpha(\alpha+1) \lambda^{\alpha}}{(\lambda+s)^{\alpha+2}}\right|_{s=0}=\frac{\alpha(\alpha+1)}{\lambda^{2}}
\end{aligned}
$$

Finally, the variance:

$$
\sigma_{X}^{2}=E\left[X^{2}\right]-E[X]^{2}=\frac{\alpha(\alpha+1)}{\lambda^{2}}-\frac{\alpha^{2}}{\lambda^{2}}=\frac{\alpha}{\lambda^{2}}
$$

(Skip 3.10, 11 and 12)
\#3.1 Urn contains 90 -- \$1; 9 -- \$5; 1 -- $\$ 50 \quad$ Let X be denomination of bill a) Describe space, S. Specify probability of events

The sample space has 100 elements, with each element corresponding to a bill. $\mathrm{S}=$ $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{100}\right\}$ where ξ_{i} represents the $\mathrm{i}^{\text {th }}$ bill. All bills are equiprobable

$$
P\left[\left\{\xi_{i}\right\}\right]=1 / 100
$$

b) Describe sample space. Find Probabilities.
X is the denomination of a bill. There are three denominations, so: $S_{x}=\{1,5,50\}$. The probability of a denomination is proportional to the number of bills with that denomination:

$$
\begin{aligned}
& \mathrm{P}[\mathrm{X}=1]=\mathrm{P}[\{\xi: \mathrm{X}(\xi)=1\}]=90 / 100=0.90 \\
& \mathrm{P}[\mathrm{X}=5]=\mathrm{P}[\{\xi: \mathrm{X}(\xi)=5\}]=9 / 100=0.09 \\
& \mathrm{P}[\mathrm{X}=50]=\mathrm{P}[\{\xi: \mathrm{X}(\xi)=50\}]=1 / 100=0.01
\end{aligned}
$$

\#3.6 Plot $\mathrm{F}_{\mathrm{x}}(\mathrm{x})$ in problem \#1

\#3.12 Let U be uniform r.v. in the interval $[-1,1]$.
Find $\mathrm{P}[\mathrm{U}>0], \mathrm{P}[\mathrm{U}<5], \mathrm{P}[|\mathrm{U}|<1 / 3], \mathrm{P}[1 / 3<\mathrm{U}<1 / 2]$, and $\mathrm{P}[|\mathrm{U}| \geq 3 / 4$]

$$
\begin{aligned}
& \mathrm{P}[\mathrm{U}>0]=1-\mathrm{P}[\mathrm{U} \leq 0]=1-\mathrm{F}_{\mathrm{u}}(0)=1 / 2 \\
& \mathrm{P}[\mathrm{U}<5]=1 \\
& \mathrm{P}[|\mathrm{U}|<1 / 3]=\mathrm{P}[-1 / 3<\mathrm{U}<1 / 3]=\mathrm{F}_{\mathrm{u}}(1 / 3)-\mathrm{F}_{\mathrm{u}}(-1 / 3)=2 / 3-1 / 3=1 / 3 \\
& \mathrm{P}[1 / 3<\mathrm{U}<1 / 2]=\mathrm{F}_{\mathrm{u}}(1 / 2)-\mathrm{F}_{\mathrm{u}}(1 / 3)=3 / 4-2 / 3=1 / 12 \\
& \mathrm{P}[|\mathrm{U}| \geq 3 / 4]=1-\mathrm{P}[|\mathrm{U}|<3 / 4]=1-\left[\mathrm{F}_{\mathrm{u}}(3 / 4)-\mathrm{F}_{\mathrm{u}}(-3 / 4)\right]=1-[7 / 8-1 / 8]=1 / 4
\end{aligned}
$$

\#3.19

$$
f_{\mathrm{x}}(\mathrm{x})= \begin{cases}\operatorname{cx}(1-\mathrm{x}) & 0 \leq \mathrm{x} \leq 1 \\ 0 & \text { o.w. }\end{cases}
$$

a) find c? We use the fact that the pdf must integrate to one:

$$
1=\int_{0}^{1} f_{x}(x) d x=c \int_{0}^{1} x(1-x) d x=c\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}=\frac{c}{6} \Rightarrow c=6
$$

b) find $\mathrm{P}[1 / 2 \leq \mathrm{X} \leq 3 / 4]$?

$$
P\left[\frac{1}{2} \leq X \leq \frac{3}{4}\right]=6 \int_{1 / 2}^{3 / 4} x(1-x) d x=6\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{1 / 2}^{3 / 4}=0.34375
$$

c) find $\mathrm{F}_{\mathrm{x}}(\mathrm{x})$? for $0 \leq \mathrm{x} \leq 1$

$$
\begin{aligned}
& F_{x}(x)=\int_{0}^{x} f_{x}\left(x^{\prime}\right) d x^{\prime}=3 x^{2}-2 x^{3} \\
& \text { for } \mathrm{x}<0, \mathrm{~F}_{\mathrm{x}}(\mathrm{x})=0 ; \text { for } \mathrm{x}>1, \mathrm{~F}_{\mathrm{x}}(\mathrm{x})=1,
\end{aligned}
$$

\#3.32 X is binomial r.v. n trials
$p=$ prob. of success
a) Let I_{k} denote the outcome of the kth Bernoulli trial. The probability that the single event occurred in the kth trial is:

$$
\begin{aligned}
P\left[I_{k}=1 \mid X=1\right]= & \frac{P\left[I_{k}=1 \quad \text { and } \quad I_{j}=0 \quad \text { for all } j \neq k\right]}{P[X=1]} \\
& \left.=\frac{P\left[\begin{array}{ll}
0 & 0 \ldots 1 \\
\text { kth outcome }
\end{array}\right.}{P[X=1]}\right] \\
& =\frac{p(1-p)^{n-1}}{\binom{n}{1} p(1-p)^{n-1}}=\frac{1}{n}
\end{aligned}
$$

Thus the single event is equally likely to have occurred in any of the n trials
b) Suppose $\mathrm{X}=2$. Find prob. two events occurred in $\mathrm{j}^{\text {th }}$ and $\mathrm{k}^{\text {th }}$ trials

$$
\mathrm{j}<\mathrm{k}
$$

The probability that the two successes occurred in trials j and k is:

$$
\begin{aligned}
P\left[I_{j}=1, I_{k}=1 \mid X\right. & =2]=\frac{P\left[I_{j}=1, I_{k}=1, I_{m}=0 \quad \text { for all } m \neq j, k\right]}{P[X=2]} \\
& =\frac{p^{2}(1-p)^{n-2}}{\binom{n}{2} p^{2}(1-p)^{n-2}}=\frac{1}{\binom{n}{2}}
\end{aligned}
$$

Thus all $\binom{n}{2}$ possible devices of j and k are equally likely.
c)In what sense are successes distributed "completely at random".

If $\mathrm{X}=\mathrm{k}$ then location of successes selected at random from among the

$$
\binom{n}{k} \quad \text { possible permutations. }
$$

\#3.51 r.v. X has Laplacian pdf

$$
f_{X}(x)=\frac{\alpha e^{-\alpha|x|}}{2} \quad \text { where } \quad \alpha>0,-\infty<x<\infty
$$

X is input to 8 -level quantizer (Ex: 3.19)
Find pmf. Find prob. X exceeds range $\pm 4 \mathrm{~d}$

Since symmetric pdf, we utilize it to find:

$$
\begin{aligned}
& P[Y=3.5 d]=P[Y=-3.5 d]=\int_{-\infty}^{-3 d} \frac{\alpha e^{\alpha x}}{2} d x=\frac{1}{2} e^{-3 \alpha d} \\
& P[Y=2.5 d]=P[Y=-2.5 d]=\int_{-3 d}^{-2 d} \frac{\alpha e^{\alpha x}}{2} d x=\frac{1}{2}\left(e^{-2 \alpha d}-e^{-3 \alpha d}\right) \\
& P[Y=1.5 d]=P[Y=-1.5 d]=\int_{-2 d}^{-d} \frac{\alpha e^{\alpha x}}{2} d x=\frac{1}{2}\left(e^{-\alpha d}-e^{-2 \alpha d}\right) \\
& P[Y=0.5 d]=P[Y=-0.5 d]=\int_{-d}^{0} \frac{\alpha e^{\alpha x}}{2} d x=\frac{1}{2}\left(1-e^{-\alpha d}\right) \\
& P[|Y|>4 d]=2 \int_{-\infty}^{-4 d} \frac{\alpha e^{\alpha x}}{2} d x=e^{-4 \alpha d}
\end{aligned}
$$

\#3.56 If current X is zero mean Gaussian r.v. Find pdf of power $\left(\mathrm{Y}=\mathrm{RX}^{2}\right)$

$$
\begin{aligned}
& \mathrm{X} \sim \mathrm{~N}\left(0, \alpha^{2}\right) \\
& \begin{aligned}
F_{\text {power }}(y) & =P\left[R X^{2} \leq y\right]=P[-\sqrt{y / R} \leq X \leq \sqrt{y / R}] \\
& =F_{x}(\sqrt{y / R})-F_{x}(-\sqrt{y / R}) \quad y \geq 0
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
f_{\text {power }}(y) & =\frac{f_{x}(\sqrt{y / R})}{2 \sqrt{y / R}} \frac{1}{R}-\frac{f_{x}(-\sqrt{y / R})}{-2 \sqrt{y / R}} \frac{1}{R} \\
& =\frac{f_{x}(\sqrt{y / R})}{2 R \sqrt{y / R}}+\frac{f_{x}(-\sqrt{y / R})}{2 R \sqrt{y / R}}=\frac{1}{\sqrt{2 \pi \alpha^{2} R y}} \exp \left(-\frac{y}{2 \alpha^{2} R}\right)
\end{aligned}
$$

\#3.74

$$
\begin{array}{ll}
\text { Let } Y=A \cos (w t)+C & \\
w, C[A]=m \\
w & \text { constants }
\end{array} \quad \sigma_{A}{ }^{2}=\sigma^{2} .
$$

$$
\mathrm{E}[\mathrm{Y}]=\mathrm{E}[\mathrm{~A} \operatorname{coswt}+\mathrm{C}]=\mathrm{E}[\mathrm{Acoswt}]+\mathrm{C}=\mathrm{E}[\mathrm{~A}] \operatorname{coswt}+\mathrm{C}=\mathrm{m} \operatorname{coswt}+\mathrm{C}
$$

$$
\sigma_{\mathrm{Y}}^{2}=\mathrm{E}\left[\mathrm{Y}^{2}\right]-\mathrm{E}[\mathrm{Y}]^{2}
$$

$$
\mathrm{E}\left[\mathrm{Y}^{2}\right]=\mathrm{E}\left[\mathrm{~A}^{2} \cos ^{2} \mathrm{wt}+2 \mathrm{AC} \operatorname{coswt}+\mathrm{C}^{2}\right]=\mathrm{E}\left[\mathrm{~A}^{2}\right] \cos ^{2} \mathrm{wt}+2 \mathrm{C} \operatorname{coswt} \mathrm{E}[\mathrm{~A}]+\mathrm{C}^{2}
$$

$$
=\left(\sigma^{2}+m^{2}\right) \cos ^{2} w t+2 m C \cos w t+C^{2}
$$

$$
\sigma_{Y}^{2}=\mathrm{E}\left[\mathrm{Y}^{2}\right]-\mathrm{E}[\mathrm{Y}]^{2}
$$

$$
=\left(\sigma^{2}+m^{2}\right) \cos ^{2} w t+2 m C \cos w t+C^{2}-m^{2} \cos ^{2} w t-2 m C \cos w t-C^{2}
$$

$$
=\sigma^{2} \cos ^{2} \mathrm{wt}
$$

\#3.88 Find characteristic function of the uniform r.v. in the interval [a,b] Find mean and variance.
$\Phi_{X}(w)=\int_{-\infty}^{\infty} f_{X}(x) e^{j w x} d x=\int_{a}^{b} \frac{1}{b-a} e^{j w x} d x=\frac{e^{j w b}-e^{j w a}}{j w(b-a)}$
$E[X]=\left.\frac{1}{j} \frac{d \Phi_{X}(w)}{d w}\right|_{w=0}=-\frac{1}{b-a}\left[-\frac{1}{2} b^{2}+\frac{1}{2} a^{2}\right]=\frac{1}{2}(b+a)$
$E\left[X^{2}\right]=\left.\frac{1}{j^{2}} \frac{d^{2} \Phi_{X}(w)}{d w^{2}}\right|_{w=0}=-\frac{1}{j(b-a)}\left[-\frac{1}{3} j b^{3}+\frac{1}{3} j a^{3}\right]=\frac{1}{3}\left(b^{2}+a b+a^{2}\right)$
$\operatorname{VAR}[X]=E\left[X^{2}\right]-E[X]^{2}=\frac{1}{3}\left(b^{2}+a b+a^{2}\right)-\frac{1}{4}(b+a)^{2}=\frac{1}{12}(b-a)^{2}$

