Chapter 2 - Basics of Probability Theory

Random Experiments

A random experiment is specified by stating:
a) an experimental procedure, and
b) a set of one or more measurements (observation).

Experiments in Ex 2.1

EXAMPLE 2.2

The sample spaces corresponding to the experiments in Example 2.1 are given below using set notation:

$$
\begin{aligned}
& S_{1}=\{1,2, \ldots, 50\} \\
& S_{2}=\{(1, b),(2, b),(3, w),(4, w)\} \\
& S_{3}=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{THH}, \mathrm{TTH}, \mathrm{THT}, \mathrm{HTT}, \mathrm{TTT}\} \\
& S_{4}=\{0,1,2,3\} \\
& S_{5}=\{0,1,2, \ldots, N\} \\
& S_{6}=\{1,2,3, \ldots\} \\
& S_{7}=\{x: 0 \leq x \leq 1\}=[0,1] \quad \text { See Fig. 2.1(a). } \\
& S_{8}=\{t: t \geq 0\}=[0, \infty) \\
& S_{9}=\{t: t \geq 0\}=[0, \infty) \quad \text { See Fig. } 2.1(\mathrm{~b}) . \\
& S_{10}=\{v:-\infty<v<\infty\}=(-\infty, \infty) \\
& S_{11}=\left\{\left(v_{1}, v_{2}\right):-\infty<v_{1}<\infty \text { and }-\infty<v_{2}<\infty\right\} \\
& S_{12}=\{(x, y): 0 \leq x \leq 1 \text { and } 0 \leq y \leq 1\} \quad \text { See Fig. 2.1(c). } \\
& S_{13}=\{(x, y): 0 \leq y \leq x \leq 1\} \quad \text { See Fig. 2.1(d). } \\
& S_{14}= \text { set of functions } X(t) \text { for which } X(t)=1 \text { for } 0 \leq t<t_{0} \text { and } \\
& X(t)=0 \text { for } t \geq t_{0}, \text { where } t_{0}>0 \text { is the time when the component } \\
& \text { fails. }
\end{aligned}
$$

Observations:

- Same procedure but different observations: $\mathrm{E}_{3}, \mathrm{E}_{4}$
- Multiple observations: $\mathrm{E}_{2}, \mathrm{E}_{3}, \mathrm{E}_{11}, \mathrm{E}_{12}, \mathrm{E}_{13}$
- Sequential experiments: $\mathrm{E}_{3}, \mathrm{E}_{4}, \mathrm{E}_{5}, \mathrm{E}_{6}, \mathrm{E}_{12}, \mathrm{E}_{13}$

Sample Space

Outcome \equiv Sample point: A result of an experiment that cannot be decomposed into other results.

- Outcomes are mutually exclusive
- Sample Space $\equiv S=$ Set of all possible outcomes.

Example 2.2

```
EXAMPLE 2.2
            The sample spaces corresponding to the experiments in Example 2.1 are given
            below using set notation:
            \(S_{1}=\{1,2, \ldots, 50\}\)
            \(S_{2}=\{(1, b),(2, b),(3, w),(4, w)\}\)
            \(S_{3}=\{\mathrm{HHH}\), HHT, HTH, THH, TTH, THT, HTT, TTT \(\}\)
            \(S_{4}=\{0,1,2,3\}\)
            \(S_{5}=\{0,1,2, \ldots, N\}\)
            \(S_{6}=(1,2,3, \ldots)\)
            \(S_{T}=\{x: 0 \leq x \leq 1\}=[0,1] \quad\) See Fig. 2.1(a).
            \(S_{8}=\{t: t \geq 0\}=[0, \infty)\)
            \(S_{9}=\{t: t \geq 0\}=[0, \infty) \quad\) See Fig. 2.1(b).
            \(S_{10}=\{v:-\infty<v<\infty\}=(-\infty, \infty)\)
            \(S_{11}=\left\{\left(v_{1}, v_{2}\right):-\infty<v_{1}<\infty\right.\) and \(\left.-\infty<v_{2}<\infty\right\}\)
            \(S_{12}=\{(x, y): 0 \leq x \leq 1\) and \(0 \leq y \leq 1\} \quad\) See Fig. 2.1(c).
            \(S_{13}=\{(x, y): 0 \leq y \leq x \leq 1\} \quad\) See Fig. 2.1(d).
            \(S_{14}=\) set of functions \(X(t)\) for which \(X(t)=1\) for \(0 \leq t<t_{0}\) and
                \(X(t)=0\) for \(t \geq t_{0}\), where \(t_{0}>0\) is the time when the component
                fails.
```

Observations:

- Discrete Sample Space: S is countably finite or infinite.

Ex: $\quad S_{1}-S_{5}$: countably finite
$S_{6} \quad:$ countably infinite

- Continuous Sample Space: S is not countable.

Ex: $\quad S_{7}-S_{13} \quad$: continuous S

- Multi-dimensional Sample Space: One or more observations from an experiment.

Ex: $\quad S_{2}, S_{11}, S_{12}, S_{13}$, and S_{3}

- Multi-dimensional sample spaces can be written as Cartesian product of other sets.

Ex: $\quad S_{11}=R x R$
Events: Set of outcomes from S that satisfy certain conditions.

- Certain Event = S; always occurs.
- Null Event = \varnothing; never occurs.
(See Ex: 2.3 pp 26-27 for events.)
- Elementary Event: An event from an S that contains a Single outcome

Ex: A_{2} and A_{7} in Ex 2.3

Set Operations \& Venn Diagrams

Union: $\mathrm{A} \cup \mathrm{B}: \quad$ Set of outcomes either in A , or in B , or in both.
Intersecton: $\mathrm{A} \cap \mathrm{B}: \quad$ Set of outcomes that are in both A and B .
Complement: $\mathrm{A}^{\mathrm{c}}: \quad$ Set of outcomes that are not in A .

$A \cup B$

$A \cap B$

A^{c}

Mutually Exclusive \equiv Disjoint : if $\mathbf{A} \cap \mathbf{B}=\boldsymbol{\phi}$; disjoint events cannot occur simultaneously.

$A \cap B=\varnothing$

$A \subset B$

Implication : If an event A is a subset of an event B , then A implies $\mathrm{B}: \mathrm{A} \subset \mathrm{B}$
Equal : A and B are equal if they contain same outcomes.
Properties:

1) Commutativity: $A \cup B=B \cup A$ and $A \cap B=B \cap A$
2) Associativity: $A \cup(B \cup C)=(A \cup B) \cup C$ and $A \cap(B \cap C)=(A \cap B) \cap C$
3) Distributivity: $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ and $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
4) DeMorgan's Rule: $(A \cap B)^{c}=A^{c} \cup B^{c}$ and $(A \cup B)^{c}=A^{c} \cap B^{c}$
$E x: 1 A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

$\mathrm{A} \cup(\mathrm{B} \cap \mathrm{C})$

$(\mathrm{A} \cup \mathrm{B}) \cap(\mathrm{A} \cup \mathrm{C})$

Ex:2 $(\mathrm{A} \cap \mathrm{B})^{\mathrm{c}}=\mathrm{A}^{\mathrm{c}} \cup \mathrm{B}^{\mathrm{c}}$

$(\mathrm{A} \cap \mathrm{B})^{\mathrm{c}}$

$\mathrm{A}^{\mathrm{c}} \cup \mathrm{B}^{\mathrm{c}}$

Ex: 2.5 System Reliability: Assume A_{k} : Event "Component C_{k} is functioning."

(a) Series system

$$
\mathrm{D}_{\mathrm{a}}=\mathrm{A}_{1} \cap \mathrm{~A}_{2} \cap \mathrm{~A}_{3}
$$

(b) Parallel system

(c) Two-out-of-three system

$$
\begin{aligned}
\mathrm{D}_{\mathrm{b}}=\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup \mathrm{~A}_{3} \quad \mathrm{D}_{\mathrm{c}}= & \left(\mathrm{A}_{1} \cap \mathrm{~A}_{2} \cap \mathrm{~A}_{3}\right) \cup\left(\mathrm{A}_{3}{ }^{\mathrm{c}} \cap \mathrm{~A}_{1} \cap \mathrm{~A}_{2}\right) \\
& \cup\left(\mathrm{A}_{2}{ }^{\mathrm{c}} \cap \mathrm{~A}_{1} \cap \mathrm{~A}_{3}\right) \cup\left(\mathrm{A}_{1}{ }^{\mathrm{c}} \cap \mathrm{~A}_{2} \cap \mathrm{~A}_{3}\right)
\end{aligned}
$$

Multiple Unions and intersections:

$$
\underset{k=1}{\bigcup} A_{k}=A_{1} \cup A_{2} \cup \ldots \cup A_{n} \quad \text { and } \quad \bigcap_{k=1}^{n} A_{k}=A_{1} \cap A_{2} \cap \ldots \cap A_{n}
$$

Kolmogorov's Axioms of Probability and Corollaries

Let E be a random experiment with sample space S. A probability law for E is a rule that assigns to each event A a number $\mathrm{P}(\mathrm{A})$ satisfying:
I. $0 \leq \mathrm{P}(\mathrm{A})$
II. $\mathrm{P}(S)=1$
III.If $\mathrm{A} \cap \mathrm{B}=\varnothing$, then $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$

$$
P\left[\bigcup_{k=1}^{\infty} A k\right]=\sum_{k=1}^{\infty} P(A k)
$$

III' If $A \bigcap B \neq \phi$ then $P(A \bigcup B)=P(A)+P(B)-P(A \cap B)$
Corollary 1: $\mathrm{P}\left(\mathrm{A}^{\mathrm{c}}\right)=1-\mathrm{P}(\mathrm{A})$
Proof:
Since $\mathrm{A} \cap \mathrm{A}^{\mathrm{c}}=\varnothing$, we have $\mathrm{P}\left(\mathrm{A} \cup \mathrm{A}^{\mathrm{c}}\right)=\mathrm{P}(\mathrm{A})+\mathrm{P}\left(\mathrm{A}^{\mathrm{c}}\right)$
Since $S=\mathrm{A} \cup \mathrm{A}^{\mathrm{c}}$ for $\mathrm{II}, 1=\mathrm{P}(\mathrm{S})=\mathrm{P}\left(\mathrm{A} \cup \mathrm{A}^{\mathrm{c}}\right)=\mathrm{P}(\mathrm{A})+\mathrm{P}\left(\mathrm{A}^{\mathrm{c}}\right)$

$$
\Rightarrow P\left(A^{c}\right)=1-P(A) \quad Q . E . D
$$

Corollary 2: $\mathrm{P}(\mathrm{A}) \leq 1$
Corollary 2: $\quad \mathrm{P}(\varnothing)=0$
Corollary 4: If $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots \mathrm{~A}_{\mathrm{n}}$ are pairwise disjoint, then

$$
P\left[\underset{k}{\left[\begin{array}{l}
U \\
=
\end{array} A_{1}\right.} \begin{array}{l}
n
\end{array}\right]=\sum_{k}^{n} P\left(\begin{array}{ll}
A
\end{array}\right) \quad \text { for } n \geq 2
$$

Corollary 5: $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \leq \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$

Proof: $\quad \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}^{\mathrm{c}}\right)+\mathrm{P}\left(\mathrm{B} \cap \mathrm{A}^{\mathrm{c}}\right)+\mathrm{P}(\mathrm{A} \cap \mathrm{B})$

$$
\mathrm{P}(\mathrm{~A})=\mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}^{\mathrm{c}}\right)+\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})
$$

$$
\mathrm{P}(\mathrm{~B})=\mathrm{P}\left(\mathrm{~B} \cap \mathrm{~A}^{\mathrm{c}}\right)+\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \text {, then }
$$

$$
\begin{aligned}
\mathrm{P}(\mathrm{~A} \cup \mathrm{~B})= & \mathrm{P}(\mathrm{~A})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})+\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \\
= & \mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \\
& \text { Q.E.D. }
\end{aligned}
$$

Corollary 6:

$$
\begin{aligned}
P\left[\bigcup_{k=1}^{n} A_{k}\right] & =\sum_{j=1}^{n} P\left(A_{j}\right)-\sum_{j<k}^{n} P\left(A_{j} \cap A_{k}\right)+\ldots \\
& +(-1)^{n+1} P\left(A_{1} \cap \ldots \cap A_{n}\right)
\end{aligned}
$$

Corrollary 7: \quad If $\mathrm{A} \subset \mathrm{B}$, then $\mathrm{P}(\mathrm{A}) \leq \mathrm{P}(\mathrm{B})$

$$
P(B)=P(A)+P \underbrace{P\left(A^{\mathrm{c}} \cap B\right)}_{\text {Since } \geq 0} \geq P(A)
$$

Discrete vs. Continuous Samples

Discrete Sample Spaces

- Given a finite sample space $S=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}\right\}$ and all distinct elements are disjoint, then the probability of an event
$B=\left\{a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{m}{ }^{\prime}\right\} \Rightarrow P(B)=P\left\{a_{1}{ }^{\prime}, a_{2}{ }^{\prime}, \ldots, a_{m}{ }^{\prime}\right\}=P\left(a_{1}{ }^{\prime}\right)+\ldots P\left(a_{m}{ }^{\prime}\right)$, and if an event is $\mathrm{D}=\left\{\mathrm{b}_{1}{ }^{\prime}, \mathrm{b}_{2}{ }^{\prime}, \ldots\right\} \Rightarrow \mathrm{P}(\mathrm{D})=\mathrm{P}\left(\mathrm{b}_{1}{ }^{\prime}\right)+\mathrm{P}\left(\mathrm{b}_{2}{ }^{\prime}\right) \ldots$
- Equally likely outcomes: Then the probability of an event is equal to the number of outcomes in the event divided by the total number of outcomes in S.

Ex: 2.7 Tossing: 3 coins
$\Rightarrow S_{3}=\{\mathrm{HHH}, \ldots ., \mathrm{TTT}\}$ and $\mathrm{P}\{\mathrm{Ai}\}=1 / 8$
$B=$ "Two heads in 3 tosses" $=\{$ HHT, HTH, THH $\}$

$$
\begin{aligned}
& \Rightarrow P(B)=3 / 8 \\
& S_{4}=\{0,1,2,3\} \text { occurrence of } \# \text { of heads in } 3 \text { tosses }
\end{aligned}
$$

C : "Two heads in 3 tosses" : Assume S_{4} has equally likely outcomes, then

$$
\Rightarrow \mathrm{P}(\mathrm{C})=\underline{1 / 4} \quad ? ? ?
$$

Conclusion: Assumption is NOT true.

Ex: 2.8 Continue tossing until the FIRST heads shows up. Prob. Law?

$$
\begin{aligned}
& S=\{1,2,3, \ldots \ldots\} \\
& f_{j}=\frac{N_{j}}{n}=\left(\frac{1}{2}\right)^{j} \quad j=1,2, \ldots \\
& A_{\mathrm{j}}=\text { " } \mathrm{j} \text { tosses till first heads" } \\
& P\left(A_{j}\right)=\left(\frac{1}{2}\right)^{j} j=1,2, \ldots \\
& \sum_{j=1}^{\infty} P\left(A_{j}\right)=\sum_{j=1}^{\infty}\left(\frac{1}{2}\right)^{j} \text { but } \sum_{j=1}^{\infty} a^{j} \text { here } a=\frac{1}{2} \\
& P(A)=\frac{N_{1}=n / 2}{1-1 / 2}=1 \quad \text { Conclusion. Eventually "heads" will show up!!! }
\end{aligned}
$$

Continuous Sample spaces: Real lines or regions in a plane.

- Prob. Laws in experiments with such spaces specify a rule for assigning numbers to intervals of a real line or a rectangular region in a plane.

Ex: 2.9 Pick x at random between " 0 " and " 1 ".

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~b}, \mathrm{a})=\mathrm{b} \text {-a for } 0 \leq \mathrm{a} \leq \mathrm{b} \leq 1 \\
& \mathrm{P}(0,0.5)=0.5-0=0.5 \\
& \mathrm{P}(0.5,1)=1-0.5=0.5
\end{aligned}
$$

Let A: outcome in at least 0.3 away from center. Find $\mathrm{P}(\mathrm{A})=$?

$$
\mathrm{P}(\mathrm{~A})=\mathrm{P}[(0,0.2) \cup(0.8,1)]=\mathrm{P}(0,0.2)+\mathrm{P}(0.8,1)=0.4
$$

Ex: 2.10 Given: Proportion of chips whose lifetime exceeds t decreases exponentially at a rate α. Find prob. Law
Solution: $S=(0, \infty)$

$$
\begin{aligned}
& \mathrm{A}=" \mathrm{t}, \infty " \text { lifetime }>\mathrm{t} \text { for } \mathrm{t}>0 \\
& \mathrm{P}(\mathrm{~A})=\mathrm{e}^{-\mathrm{ett}} \text { for } \mathrm{t}>0 \text { and } \alpha>0 \\
& P(S)=P(0, \infty)=\left.\mathrm{e}^{-\alpha \mathrm{at}}\right|_{\mathrm{t} \rightarrow 0}=\mathrm{e}^{-0}=1 \\
& \mathrm{P}(\mathrm{r}, \mathrm{u})=? \quad \text { Notice that: }(r, u)=(r, \infty) \cup(u, \infty)
\end{aligned}
$$

$$
\begin{aligned}
& P(r, \infty)=P(r, u)+P(u, \infty) \\
& P(r, u)=P(r, \infty)-P(u, \infty)=e^{-\alpha r}-e^{-\alpha u}
\end{aligned}
$$

Ex: 2.11 E_{12} : two numbers x and y at random between 0 and 1 .

$x>1 / 2$ but $0 \leq y \leq 1$
then

$$
P(A)=1 / 2
$$

$$
B=y>1 / 2
$$

$$
\mathrm{P}(\mathrm{~B})=1 / 2
$$

C $=x>y$
$\mathrm{P}(\mathrm{C})=1 / 2$

Counting Methods:

- The number of distinct ordered k-tuples $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$ with components x_{i} from a set with n_{i} elements is $\#$ of k-tuples $=n_{1} \cdot n_{2} \cdot \ldots \cdot n_{k}$.

1. Sampling with Replacement and with Ordering:

- "k objects from a set A having n distinct objects with replacement"
$\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{k}}\right)$ where $\mathrm{x}_{\mathrm{i}} \in \mathrm{A}$ for $\mathrm{i}=1,2, \ldots, \mathrm{k}$

$$
\text { but } \mathrm{n}_{1}=\mathrm{n}_{2}=\ldots=\mathrm{n}_{\mathrm{k}}=\mathrm{n}
$$

$$
\therefore \# \text { of k-tuples }=\mathrm{n}^{\mathrm{k}} \quad(\text { ordered })
$$

Ex: 2.12 Five Balls $1-5$. Two balls are selected with replacement. How many distinct ordered pairs? Prob. Two draws yield same number?

Probability two draws yield same \# of 2 -tuples $=5^{2}=25$

Assume all draws are equally probable, then

$\mathrm{P}(\mathrm{A})=5 / 25=1 / 5$				
$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$
$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$
$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$
$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$
$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$

(a) Ordered pairs for sampling with replacement.

	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$
$(2,1)$		$(2,3)$	$(2,4)$	$(2,5)$
$(3,1)$	$(3,2)$		$(3,4)$	$(3,5)$
$(4,1)$	$(4,2)$	$(4,3)$		$(4,5)$
$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	

(b) Ordered pairs for sampling without replacement.
$(1,2)$
$(1,3)$
$(1,4)$
$(2,4)$
$(1,5)$
$(2,3)$
$(3,4)$
$(2,5)$
$(3,5)$
$(4,5)$
(c) Pairs for sampling without replacement or ordering.
2. Sampling without Replacement and with Ordering:

- Given a population A of n distinct objects. Choose k-objects in succession without repl. $\mathrm{k} \leq \mathrm{n}$
\# of possible outcomes: $\mathrm{n}_{1}=\mathrm{n} ; \mathrm{n}_{2}=\mathrm{n}-1 ; \ldots ; \mathrm{n}_{\mathrm{k}}=\mathrm{n}-(\mathrm{k}-1)$
$\#$ of distinct ordered k-tuples $=\mathrm{n}(\mathrm{n}-1) \ldots(\mathrm{n}-\mathrm{k}+1)$
Ex: 2.13 How many distinct ordered pairs?
$\Rightarrow(5)(4)=20$
Prob. $\left(1^{\text {st }}\right.$ ball $>2^{\text {nd }}$ ball) $? \Rightarrow 10 / 20=0.5$

Permutations of n-distinct objects:
(No replacement) Drawing objects until the urn is empty.
$\#$ of permutations of n objects $=n(n-1) \ldots(2)(1) \equiv n!$
Stirling's Approximation to n-Factorial: For large n, the following is valid:

$$
n!\sim \sqrt{2 \pi} \cdot n^{n+\frac{1}{2}} \cdot e^{-n}
$$

Ex: 2.15 \# of permutations of 3-distinct objects $\{1,2,3\}$?

$$
3!=(3)(2)(1)=6 \quad \Rightarrow \quad 123 \quad 312 \quad 231 \quad 132 \quad 213 \quad 321
$$

Ex: 2.1612 balls into 12 cells, more than 1 ball is O.K. to go to a cell. What is Prob. that all cells are occupied?
$\mathrm{n}^{12}=12^{12}$ possible placements of 12 balls in 12 cells!!!
$\#$ of placements that occupy 12 cells $=n!=12$!
\therefore Prob. that all cells are occupied is

$$
\frac{12!}{12^{12}}=\frac{12}{12} \frac{11}{12} \cdots \frac{1}{12}=5.37 \times 10^{-5}
$$

3. Sampling without Replacement and without ordering:

- Pick k-objects from a set of n -distinct objects without replacement or ordering
\Rightarrow Combination of size k .
Let $\mathrm{C}_{\mathrm{k}}{ }^{n}$ be the \# of combinations of size k from a population n.
$\mathrm{C}_{\mathrm{k}}{ }^{\mathrm{n}} \mathrm{k}!=$ total $\#$ of distinct ordered samples of k objects

$$
=n(n-1) \ldots(n-k+1)
$$

k ! possible orders in which k objects could be selected.
The number of different combinations of size k from population n is

$$
C_{k}^{n}=\frac{n!}{k!(n-k)!} \equiv\binom{n}{k} \quad \text { binomial coefficient }
$$

Ex: 2.17 Two objects from $A=\{1,2,3,4,5\}$

$$
C_{2}^{5}=\binom{5}{2}=\frac{5!}{2!(5-2)!}=\frac{5 * 4 * 3 * 2 * 1}{(2 * 1)(3 * 2 * 1)}=10 \quad \text { pairs }
$$

(See Figure 2.10c)

Ex: 2.1950 items containing 10 defective elements. Set of 10 items tested $\mathrm{P}(\mathrm{A}) \equiv$ Prob. that exactly 5 items tested are defective?

$$
C_{10}^{50}=\binom{50}{10}=\frac{50!}{10!* 40!}
$$

$N_{1}=\#$ of ways of selecting 5 items from a set of 10 def.
$N_{2}=\#$ of ways of selecting 5 items from a set of 40 good items
$\Rightarrow N_{1} N_{2}=\#$ of ways of selecting 5 def +5 good items.

$$
P(A)=\frac{N_{1} N_{2}}{\binom{50}{10}}=\frac{\binom{10}{5}\binom{40}{5}}{\binom{50}{10}}=\frac{\frac{10!}{5!* 5!5!* 35!} \frac{40!}{\frac{50!}{40!* 10!}}}{=\frac{10!* 40!* 40!* 10!}{5!* 5!* 5!* 35!* 50!}}=0.016
$$

Conditional Probability: Knowing that B has occurred:

$$
P(A / B)=\frac{P(A \cap B)}{P(B)} \quad \text { for } P(B)>0
$$

Relative frequency of A among those satisfying the conditions of B at the same time.

Ex: 2.21 Two black balls $(1,2)$ Two white balls $(3,4)$

$$
\begin{aligned}
& S=\{(1, \mathrm{~b}),(2, \mathrm{~b}),(3, \mathrm{w}),(4, \mathrm{w})\} \\
& \mathrm{A}=\text { Black ball selected }=\{(1, \mathrm{~b}),(2, \mathrm{~b})\} \\
& \mathrm{B}=\text { Even_ball selected }=\{(2, \mathrm{~b}),(4, \mathrm{w})\} \\
& \mathrm{C}=\text { Ball number }>2 \quad=\{(3, \mathrm{w}),(4, \mathrm{w})\} \\
& P(A \mid B)=? \quad P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{1 / 4}{1 / 2}=0.5 \\
& \quad P(A \mid C)=\frac{P(A \cap C)}{P(C)}=\frac{0}{0.5}=0
\end{aligned}
$$

Ex: Binary Symmetric Channel:

$\mathrm{A}_{\mathrm{i}}=$ Event "input was i "
$B_{i}=$ event "decision was i "
Find $\mathrm{P}\left(\mathrm{A}_{\mathrm{i}} \cap \mathrm{B}_{\mathrm{j}}\right)$ for $\mathrm{i}=0,1 ; \mathrm{j}=0,1$
$\mathrm{P}\left(\mathrm{A}_{0} \cap \mathrm{~B}_{0}\right)=(1-\mathrm{p})(1-\varepsilon)$
$\mathrm{P}\left(\mathrm{A}_{0} \cap \mathrm{~B}_{1}\right)=(1-\mathrm{p})(\varepsilon)$
$\mathrm{P}\left(\mathrm{A}_{1} \cap \mathrm{~B}_{0}\right)=\mathrm{p} \varepsilon$
$\mathrm{P}\left(\mathrm{A}_{1} \cap \mathrm{~B}_{1}\right)=\mathrm{p}(1-\varepsilon)$

Disjoint partition of S into n events
$\mathrm{P}(\mathrm{A})=\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}_{1}\right)+\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}_{2}\right)+\ldots+\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}_{\mathrm{n}}\right)$

$$
\begin{aligned}
\mathrm{P}(\mathrm{~A})= & \mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{1}\right) \mathrm{P}\left(\mathrm{~B}_{1}\right)+\mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{2}\right) \mathrm{P}\left(\mathrm{~B}_{2}\right) \\
& +\ldots+\mathrm{P}\left(\mathrm{~A} / \mathrm{B}_{\mathrm{n}}\right) \mathrm{P}\left(\mathrm{~B}_{\mathrm{n}}\right)
\end{aligned}
$$

TOTAL PROBABILITY THEOREM

Ex: 2.25 Exponential law for memory chip failure
Given: Rate of failure $=1000 \alpha$
Good chip $=1-\mathrm{p} ; \quad$ bad chips $=\mathrm{p}$
$P(C)$? where C : Randomly selected chip is functioning after t seconds
G: Chip is good B: Chip is bad.

$$
\begin{gathered}
\mathrm{P}(\mathrm{C})=\mathrm{P}(\mathrm{C} / \mathrm{G}) \mathrm{P}(\mathrm{G})+\mathrm{P}(\mathrm{C} / \mathrm{B}) \mathrm{P}(\mathrm{~B})=\mathrm{P}(\mathrm{C} / \mathrm{G})(1-\mathrm{p})+\mathrm{P}(\mathrm{C} / \mathrm{B}) \mathrm{p} \\
=(1-\mathrm{p}) \mathrm{e}^{-\alpha t}+\mathrm{pe}^{-1000 \alpha t}
\end{gathered}
$$

Bayes Theorem: Let $\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{n}}$ be a partition of S and A occurs. What is the probability of event B_{j} ?

$$
P\left(B_{j} / A\right)=\frac{P\left(A \cap B_{j}\right)}{P(A)}=\frac{P\left(A / B_{j}\right) P\left(B_{j}\right)}{\sum_{k=1}^{n} P\left(A / B_{k}\right) P\left(B_{k}\right)}
$$

Ex: 2.26 Assume input is equally likely in BSC example.
Find which input is more probable
Given that receiver has output a " 1 "
A_{k} : Event that input was " k " for $\mathrm{k}=0,1$
B_{1} : Event that receiver output was a " 1 "

$$
\begin{aligned}
& P\left(B_{1}\right)=P\left(B_{1} / A_{0}\right) * P\left(A_{0}\right)+P\left(B_{1} / A_{1}\right) * P\left(A_{1}\right)=\varepsilon * \frac{1}{2}+(1-\varepsilon) * \frac{1}{2}=\frac{1}{2} \\
& P\left(A_{0} / B_{1}\right)=\frac{P\left(B_{1} / A_{0}\right) * P\left(A_{0}\right)}{P\left(B_{1}\right)}=\frac{\varepsilon / 2}{1 / 2}=\varepsilon
\end{aligned}
$$

If $\varepsilon<1 / 2$ then the input " 1 " is more likely when a " 1 " is observed at the output of the channel.

$$
P\left(A_{1} / B_{1}\right)=\frac{P\left(B_{1} / A_{1}\right) * P\left(A_{1}\right)}{P\left(B_{1}\right)}=\frac{(1-\varepsilon) / 2}{1 / 2}=1-\varepsilon
$$

Independent Events \& Probabilities: If occurrence of an event B does not change the prob. of another event A , then events A and B are independent of each other.
$\mathrm{A} \& \mathrm{~B}$ are independent if we have:

$$
P(A)=P(A / B)=\frac{P(A \cap B)}{P(B)}
$$

or equivalently,

$$
P(A \cap B)=P(A) P(B)
$$

Ex: 2.28 A: $\{(1, \mathrm{~b}),(2, \mathrm{~b})\} \quad$ "black ball selected"
B: $\{(2, \mathrm{~b}),(4, \mathrm{w})\}$ "even-numbered ball selected"
$\mathrm{C}:\{(3, \mathrm{w}),(4, \mathrm{w})\} \quad$ "number of ball is greater than 2 "
Are A \& B; A \& C indep?
$\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{C})=1 / 2$
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}[(2, \mathrm{~b})]=1 / 4 \quad \mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B})=(1 / 2)(1 / 2)=1 / 4$
So the knowledge of the occurrence of B does not change the probability of the occurrence of A since

$$
P(A / B)=\frac{P(A \cap B)}{P(B)}=\frac{1 / 4}{1 / 2}=1 / 2 \quad \text { and } \quad P(A)=1 / 2
$$

But: $\mathrm{A} \cap \mathrm{C}=0 \Rightarrow \mathrm{P}(\mathrm{A} \cap \mathrm{C})=0$ and $\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{C})=(1 / 2)(1 / 2)=1 / 4$ Therefore, A and C are NOT independent.

Ex: 2.29 Given: $\mathrm{A}=\{\mathrm{x}>0.5\} ; \mathrm{B}=\{\mathrm{y}>0.5\} ; \mathrm{C}=\{\mathrm{x}>\mathrm{y}\}$
$\mathrm{A} \& \mathrm{~B}$ and $\mathrm{A} \& \mathrm{C}$ independent?

$$
P(A / B)=\frac{P(A \cap B)}{P(B)}=\frac{1 / 4}{1 / 2}=1 / 2=P(A)
$$

$\mathrm{A} \& \mathrm{~B}$ are independent.

However,

$$
P(A / C)=\frac{P(A \cap C)}{P(C)}=\frac{3 / 8}{1 / 2}=3 / 4
$$

But $\mathrm{P}(\mathrm{A})=1 / 2 \neq 3 / 4$
$\therefore \mathrm{A}$ and C are not independent events
\Rightarrow knowing that $\mathrm{x}>\mathrm{y}$ increases the probability that $\mathrm{x}>0.5$

Three Independent Events:
A, B and C are independent if the probability of intersection of any pair or triplet of events is equal to the product of $\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{C})$

$$
\begin{aligned}
& \Rightarrow \mathrm{P}(\mathrm{~A} \cap \mathrm{~B} \cap \mathrm{C})=\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \mathrm{P}(\mathrm{C})=\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B}) \mathrm{P}(\mathrm{C}) \\
& \Rightarrow \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B}) \mathrm{P}(\mathrm{~A} \cap \mathrm{C})=\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{C}) \\
& \Rightarrow \mathrm{P}(\mathrm{~B} \cap \mathrm{C})=\mathrm{P}(\mathrm{~B}) \mathrm{P}(\mathrm{C})
\end{aligned}
$$

Ex: 2.30 Given:

$$
\begin{aligned}
& B=\{y>1 / 2\} ; \\
& D=\{x<1 / 2\} \\
& F=\{(x<1 / 2 \text { and } y<1 / 2) \cup(x>1 / 2 \text { and } y>1 / 2\}
\end{aligned}
$$

$P(B \cap D)=1 / 4$	Also	$P(B) \cdot P(D)=1 / 2 * 1 / 2=1 / 4$
$P(B \cap F)=1 / 4$	Also	$P(B) \cdot P(F)=1 / 2 * 1 / 2=1 / 4$
$P(D \cap F)=1 / 4$	Also	$P(D) \cdot P(F)=1 / 2 * 1 / 2=1 / 4$

But,

Three events are not independent. Even though they are pairwise independent.

Ex: 2.32
System $=A$ controller (A) and 3 peripherals $\left(B_{1}, B_{2}, B_{3}\right)$
System is UP if A is functioning + at least 2 peripherals are ON
A : Controller in ON
F: Two or more periph are ON

$$
=\left(\mathrm{B}_{1} \cap \mathrm{~B}_{2} \cap \mathrm{~B}_{3}\right) \cup\left(\mathrm{B}_{1} \cap \mathrm{~B}_{2} \cap \mathrm{~B}_{3}{ }^{\mathrm{C}}\right) \cup\left(\mathrm{B}_{1} \cap \mathrm{~B}_{3} \cap \mathrm{~B}_{2}{ }^{\mathrm{C}}\right) \cup\left(\mathrm{B}_{2} \cap \mathrm{~B}_{3} \cap \mathrm{~B}_{1}{ }^{\mathrm{C}}\right)
$$

Note each peripheral is disjoint from others and
let $P\left(B_{i}\right)=1-a \quad$ and
$\mathrm{P}\left(\mathrm{B}_{\mathrm{i}}^{\mathrm{C}}\right)=\mathrm{a}$;
$\mathrm{P}\left(\mathrm{A}^{\mathrm{C}}\right)=\mathrm{p}$ and

$$
P(A)=1-p
$$

$$
\mathrm{P}(\mathrm{~F})=\mathrm{P}\left(\mathrm{~B}_{1}\right) \mathrm{P}\left(\mathrm{~B}_{2}\right) \mathrm{P}\left(\mathrm{~B}_{3}\right)+\mathrm{P}\left(\mathrm{~B}_{1}\right) \mathrm{P}\left(\mathrm{~B}_{2}\right) \mathrm{P}\left(\mathrm{~B}_{3}{ }^{\mathrm{C}}\right)+\mathrm{P}\left(\mathrm{~B}_{1}\right) \mathrm{P}\left(\mathrm{~B}_{3} \mathrm{P}\left(\mathrm{~B}_{2}{ }^{\mathrm{C}}\right)\right.
$$

$$
+\mathrm{P}\left(\mathrm{~B}_{2}\right) \mathrm{P}\left(\mathrm{~B}_{3}\right) \mathrm{P}\left(\mathrm{~B}_{1}{ }^{\mathrm{C}}\right)
$$

$$
=(1-a)^{3}+3(1-a)^{2} a
$$

System is UP: $\mathrm{P}\left({ }^{\prime} \mathrm{UP}\right.$ " $)=\mathrm{P}(\mathrm{A} \cap \mathrm{F})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{F})=(1-\mathrm{p})\left[(1-\mathrm{a})^{3}+3(1-\mathrm{a})^{2} \mathrm{a}\right]$
Assume a particular set of values:

$$
\mathrm{a}=10 \%
$$

$$
\begin{aligned}
& \mathrm{p}=20 \% \\
& \Rightarrow \mathrm{P}\left({ }^{\prime} \mathrm{UP} \text { ") }\right)=77.8 \%
\end{aligned}
$$

Mostly due to controller failures of 20%.
Since $P(F)=(0.9)^{3}+3(0.9)^{2}(0.1)=97.2 \%$

Sequential Experiments:

Sequences of Independent Experiments: They are set of simpler sub-experiments:
$E_{1}, E_{2}, \ldots E_{n}$.
The outcome $\mathrm{s}=\left(\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}}\right)$ from the Cartesian product space S of $S=S_{1} \times S_{2} \times \ldots \times S_{n}$.
If $A_{1}, A_{2}, \ldots, A_{n}$ are the events such that A_{k} concerns only of the sub-experiment E_{k} and if the sub-experiments are independent, then

$$
\mathrm{P}\left(\mathrm{~A}_{1} \cap \mathrm{~A}_{2} \ldots \cap \mathrm{~A}_{\mathrm{n}}\right)=\mathrm{P}\left(\mathrm{~A}_{1}\right) \mathrm{P}\left(\mathrm{~A}_{2}\right) \ldots \mathrm{P}\left(\mathrm{~A}_{\mathrm{n}}\right)
$$

Ex: 2.3310 numbers are selected from $[0,1]$.
Find the probability that first 5 numbers $<1 / 4$ and the last $5>1 / 2$.
Let x_{k} be sequence of 10 numbers

$\mathrm{A}_{\mathrm{k}}=\left\{\mathrm{x}_{\mathrm{k}}<1 / 4\right\} \quad$ for $\mathrm{k}=1,2, \ldots, 5 \rightarrow \mathrm{P}\left(\mathrm{A}_{\mathrm{k}}\right)=1 / 4$
$A_{k}=\left\{x_{k}>1 / 2\right\} \quad$ for $k=6,7, \ldots, 10 \rightarrow P\left(A_{k}\right)=1 / 2$
Since each number is drawn independent of the previous draw we have:
$\mathrm{P}\left(\mathrm{A}_{1} \cap \ldots \cap \mathrm{~A}_{10}\right)=\mathrm{P}\left(\mathrm{A}_{1}\right) \mathrm{P}\left(\mathrm{A}_{2}\right) \ldots \mathrm{P}\left(\mathrm{A}_{10}\right)=(1 / 4)^{5}(1 / 2)^{5}=3.05 \times 10-5$
Bernoulli Trial:
Perform an experiment once and note whether a particular event A occurs or not. (Binary outcome)

Typical question: What is the probability of k occurrences in n independent trials?
Binomial Prob. Law:

$$
P_{n}(k)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad \text { for } \quad k=0,1, \ldots, n
$$

Ex: 2.34 Toss a coin $\mathrm{n}=3$ times with probabilities: $\mathrm{P}(\mathrm{H})=\mathrm{p} \quad \mathrm{P}(\mathrm{T})=1-\mathrm{p}$ $\mathrm{P}(\mathrm{HHH})=\mathrm{P}(\mathrm{H}) \mathrm{P}(\mathrm{H}) \mathrm{P}(\mathrm{H})=\mathrm{p}^{3}$
$\mathrm{P}(\mathrm{HHT})=\mathrm{p}^{2}(1-\mathrm{p})=\mathrm{P}(\mathrm{HTH})=\mathrm{P}(\mathrm{THH})$
$\mathrm{P}($ HTT $)=\mathrm{p}(1-\mathrm{p})^{2}=\mathrm{P}($ THT $)=\mathrm{P}($ TTH $)$
$\mathrm{P}(\mathrm{TTT})=(1-\mathrm{p})^{3}$
Let k be the number heads in 3 trials, then:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{k}=0)=(1-\mathrm{p})^{3} ; \mathrm{P}(\mathrm{k}=1)=3 \mathrm{p}(1-\mathrm{p})^{2} \\
& \mathrm{P}(\mathrm{k}=2)=\mathrm{p}^{2}(1-\mathrm{p}) ; \mathrm{P}(\mathrm{k}=3)=\mathrm{p}^{3}
\end{aligned}
$$

Alternatively, from Binomial Theorem:

$$
\begin{aligned}
& P_{3}(0)=\frac{3!}{3!0!} p^{0}(1-p)^{3}=\frac{6}{6 \cdot 1} 1 \cdot(1-p)^{3}=(1-p)^{3}=P(k=0) \\
& P_{3}(1)=\frac{3!}{2!!!} p^{1}(1-p)^{2}=\frac{6}{2} p^{1} \cdot(1-p)^{2}=3 p(1-p)^{2}=P(k=1) \\
& P_{3}(3)=\frac{3!}{3!0!} p^{3}=p^{3}=P(k=3) \\
& P_{3}(2)=\frac{3!}{1!2!} p^{2}(1-p)^{1}=\frac{6}{2} p^{2} \cdot(1-p)^{1}=3 p^{2}(1-p)=P(k=2)
\end{aligned}
$$

Iterative Formula for Binomial Prob. Law:
Given $\quad P_{n}(k)$ is known, then

$$
P_{n}(k+1)=P_{n}(k) \frac{(n-k) p}{(k+1)(1-p)}
$$

Ex: 2.36 k : \# of non-silent speakers in a group of 8 .
$\mathrm{P}\left(\mathrm{k}^{\text {th }}\right.$ speaker is active $)=1 / 3$
$P(k>6)=$?

$$
\begin{aligned}
& P(k>6)=P(k=7)+P(k=8)=\binom{8}{7}(1 / 3)^{7}(2 / 3)+\binom{8}{8}(1 / 3)^{8} \\
& P(k=7)=\frac{8!}{7!\cdot 1!}(1 / 3)^{7}(2 / 3)=\frac{8}{1}(1 / 3)^{7}(2 / 3)=(16)(1 / 3)^{8}=0.002438 \\
& P(k=8)=P(k=7) \frac{(8-7)(1 / 3)}{(8)(2 / 3)}=0.00152 \\
& P(k>6)=2 * 0.00152=0.00259
\end{aligned}
$$

Only (1/4)\% of the time more than 6 speakers are talking simultaneously!!!

Ex: 2.37 Error Correction Coding in Binary Symmetric Channel
Input Output $\varepsilon=10^{-3}$

Receiver makes wrong decision if " 2 or more" errors occur in the channel.

$$
P e=P(k \geq 2)=P(k=2)+P(k=3)=\binom{3}{2} 0.001^{2}(0.999)+\binom{3}{3} 0.001^{3} \approx 3 \times 10^{-6}
$$

Reliability of system increased by ~ 300 times at a rate reduction to $1 / 3$
Multinomial Probability Law:
Let $\mathrm{B}_{1}, \mathrm{~B}_{2}, \ldots, \mathrm{~B}_{\mathrm{m}}$ be a partition of S with $\mathrm{P}\left(\mathrm{B}_{\mathrm{j}}\right)=\mathrm{p}_{\mathrm{j}}$
Since the events are mutually exclusive:

$$
\mathrm{p}_{1}+\mathrm{p}_{2}+\ldots+\mathrm{p}_{\mathrm{m}}=1
$$

Suppose n indep. Trials are done and k_{j} be $\#$ of times B_{j} occurs. The probability of the vector $\left(\mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{m}}\right)$ satisfies:

$$
P\left(k_{1}, k_{2}, \ldots, k_{m}\right)=\frac{n!}{k_{1}!k_{2}!\cdots k_{m}!} p_{1}^{k_{1}} \cdot p_{2}^{k_{2}} \cdots p_{m}^{k_{m}}
$$

Ex: 2.39 Pick 10 telephone numbers from a directory and note the last digit. $\mathrm{A}=$ Prob. that each digit 0 to 9 obtained once?

$$
\begin{aligned}
& \mathrm{M}=10 \text { digits } \\
& P\left(k_{i}\right)=1 / 10 \\
& \mathrm{n}=10 \text { trials }
\end{aligned}
$$

$$
P(A)=\frac{10!}{1!\cdot 1!\cdots 1!}(0.1)^{1}(0.1)^{1} \cdots(0.1)^{1}=(10!)(1 / 10)^{10} \approx 3.6 \times 10^{-4}
$$

Very Small !!!

Geometric Prob. Law:
Repeat Bernoulli tirals until the occurrence of $1^{\text {st }}$ success and stop.
$\mathrm{m}=\#$ of trials until stop.
$\mathrm{P}(\mathrm{m})$: Prob. that m trials are needed since the first $\mathrm{m}-1$ trials resulted in failures.

$$
\mathrm{P}(\mathrm{~m})=\mathrm{P}\left[\mathrm{~A}_{1}{ }^{\mathrm{C}} \mathrm{~A}_{2}{ }^{\mathrm{C}} \ldots \mathrm{~A}_{\mathrm{m}-1}{ }^{\mathrm{C}} \mathrm{~A}_{\mathrm{m}}\right]
$$

If $P\left(A_{i}\right)=p$ then $P\left(A_{i}^{C}\right)=1-p \quad$ and $P(m)=(1-p)^{m-1} p \quad$ for $m=1,2, \ldots$

Note: 1)

$$
\begin{aligned}
& \sum_{m=1}^{\infty} P(m)=1 ? \quad \text { Let } \mathbf{q}=1-p \\
& \sum_{m=1}^{\infty} P(m)=\sum_{m=1}^{\infty} p(1-p)^{m-1}=\sum_{m=1}^{\infty} p q^{m-1}=p \sum_{m=1}^{\infty} q^{m-1}=p \frac{1}{1-q}=p \frac{1}{p}=1
\end{aligned}
$$

Note: 2) Probability that more than \boldsymbol{k} trials needed before stopping:

$$
P(m>k)=p \sum_{m=k+1}^{\infty} q^{m-1}=p q^{k} \sum_{j=0}^{\infty} q^{j}=p q^{k} \frac{1}{1-q}=q^{k}
$$

Ex: 2.40 Error Control via Retransmission:

If B detects an error it requests
A to retransmit with $\mathrm{Pr}=0.1$
If E : Message to be transmitted >2
Prob. $\mathrm{P}(\mathrm{E})=$?
$\mathrm{P}=1-\mathrm{q}=0.9$
$P(E)=P(k>2)=q^{2}=(0.1)^{2}=10^{-2}$
One out of 100 messages will be transmitted more than twice from A to B
Trials with Dependent Experiments (Trellis Diagrams):
Chain of experiments in which future of trials depends on the outcome of a current trial.

Ex: 2.41 Urn: \(0 \quad\left\{\begin{array}{l}one ball with label " 1 "

two balls with label " 0 "\end{array}\right\} \rightarrow\)| | \longrightarrow |
| :--- | :--- |

Experiment:
1.) Flip a coin: if heads use urn 0 ; if tails use urn 1
2.) If urn 0 were the choice: Pick a ball from urn 0 ;

Otherwise from urn 1.
3._If the outcome has label " 0 ": Stay with urn 0 ;

Otherwise stay with urn 1.

Trellis Diagram

(a) Each sequence of outcomes corresponds to a path through this arellis diagram.

If the probability on S_{n} depends only on $S_{\mathrm{n}-1}$ (the most recent outcome) then these are called MARKOV CHAINS and

$$
\mathrm{P}\left(S_{0}, S_{1}, \ldots, S_{\mathrm{n}}\right)=\mathrm{P}\left(S_{\mathrm{n}} \mid S_{\mathrm{n}-1}\right) \mathrm{P}\left(S_{\mathrm{n}-1} \mid S_{\mathrm{n}-2}\right) \cdots \mathrm{P}\left(S_{1} \mid S_{0}\right) \mathrm{P}\left(S_{0}\right)
$$

Ex: $2.42 \quad \mathrm{P}(0011)=$?

\#2.3 Two dice tossed $\mathrm{A}=$ "Sum of face values"
a) $\mathrm{S}=\{2,3, \ldots, 11,12\}$
b) $\quad \mathrm{B}=$ "Even Subset of $\{\mathrm{A}\}$ "
$\mathrm{B}=\{2,4,6,8,10,12\}$
c) Elementary events as union of elementary outcomes
$\{\mathrm{A}=2\}=\{(1,1)\}$
$\{\mathrm{A}=3\}=\{(1,2) \cup(2,1)\}$
$\{\mathrm{A}=4\}=\{(1,3) \cup(2,2) \cup(3,1)\}$
$\{\mathrm{A}=5\}=\{(1,4) \cup(2,3) \cup(3,2) \cup(4,1)\}$
$\{A=6\}=\{(1,5) \cup(2,4) \cup(3,3) \cup(4,2) \cup(5,1)\}$
$\{A=7\}=\{(1,6) \cup(2,5) \cup(3,4) \cup(4,3) \cup(5,2) \cup(6,1)\}$
$\{\mathrm{A}=8\}=\{(2,6) \cup(3,5) \cup(4,4) \cup(5,3) \cup(6,2)\}$

$$
\begin{aligned}
& \{A=9\}=\{(3,6) \cup(4,5) \cup(5,4) \cup(3,3)\} \\
& \{A=10\}=\{(4,6) \cup(5,5) \cup(6,4)\} \\
& \{A=11\}=\{(5,6) \cup(6,5)\} \\
& \{A=12\}=\{(6,6)\}
\end{aligned}
$$

\#2.8

From graph $\mathrm{A} \cup \mathrm{C}=\mathrm{B}$ and since $\mathrm{A} \& \mathrm{C}$ are disjoint $\mathrm{A} \cap \mathrm{C}=\varnothing$
\#2.12 $\mathrm{C}=$ Exactly one of A and B occurs

$$
\mathrm{C}=\left(\mathrm{A} \cap \mathrm{~B}^{\mathrm{C}}\right) \cup\left(\mathrm{B} \cap \mathrm{~A}^{\mathrm{C}}\right)
$$

\#2.18 S = \{a, b, c $\}$
$\mathrm{P}(\mathrm{a}, \mathrm{c})=5 / 8 ; \quad \mathrm{P}(\mathrm{b}, \mathrm{c})=7 / 8$
Find $\mathrm{P}(\mathrm{a}), \mathrm{P}(\mathrm{b}), \mathrm{P}(\mathrm{c})$.
1.) $P(a, c)=P(a)+P(c)=5 / 8$
2.) $\mathrm{P}(\mathrm{b}, \mathrm{c})=\mathrm{P}(\mathrm{b})+\mathrm{P}(\mathrm{c})=7 / 8$

But: 3.) $\mathrm{P}\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}=\mathrm{P}(\mathrm{S})=1=\mathrm{P}(\mathrm{a})+\mathrm{P}(\mathrm{b})+\mathrm{P}(\mathrm{c})$
From (1) and (3) we find:
$\mathrm{P}(\mathrm{b})=3 / 8$
Then from (2) we get:
$\mathrm{P}(\mathrm{c})=4 / 8$
Finally,
$\mathrm{P}(\mathrm{a})=1 / 8$
\#2.21 Show that

$$
\begin{aligned}
\mathrm{P}(\mathrm{~A} \cup \mathrm{~B} \cup \mathrm{C})= & \mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{C})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{C})-\mathrm{P}(\mathrm{~B} \cap \mathrm{C})+\mathrm{P}(\mathrm{~A} \cap \mathrm{~B} \cap \mathrm{C}) \\
\mathrm{P}(\mathrm{~A} \cup \mathrm{~B} \cup \mathrm{C})= & \mathrm{P}[(\mathrm{~A} \cup \mathrm{~B}) \cup \mathrm{C})]=\mathrm{P}(\mathrm{~A} \cup \mathrm{~B})+\mathrm{P}(\mathrm{C})-\mathrm{P}[(\mathrm{~A} \cup \mathrm{~B}) \cap \mathrm{C}] \quad \text { Corre. } 5 \\
& =\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})+\mathrm{P}(\mathrm{C})-\mathrm{P}[(\mathrm{~A} \cap \mathrm{~B}) \cup(\mathrm{B} \cap \mathrm{C})] \quad \text { Cor } 5 \text { and Distr. } \\
& =\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{C})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{C})-\mathrm{P}(\mathrm{~B} \cap \mathrm{C}) \\
& +\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \cap(\mathrm{B} \cap \mathrm{C}) \\
& =\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{C})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{C})-\mathrm{P}(\mathrm{~B} \cap \mathrm{C})+\mathrm{P}(\mathrm{~A} \cap \mathrm{~B} \cap \mathrm{C})
\end{aligned}
$$

\#2.25 Use Corr. 7 to prove following:
a.) $\mathrm{P}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}) \leq \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})+\mathrm{P}(\mathrm{C})$

Corr. 7: $\quad \mathrm{P}(\mathrm{A} \cup \mathrm{B}) \leq \mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
then

$$
\mathrm{P}(\mathrm{~A} \cup \mathrm{~B} \cup \mathrm{C}) \leq \mathrm{P}(\mathrm{~A} \cup \mathrm{~B})+\mathrm{P}(\mathrm{C}) \leq \mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})+\mathrm{P}(\mathrm{C})
$$

b.) Union Bound:

$$
P\left(\bigcup_{k=1}^{n} A_{k}\right) \leq \sum_{k=1}^{n} P\left(A_{k}\right)
$$

We know from Corr. 6

$$
\mathrm{P}\left(\mathrm{~A}_{1} \cup \mathrm{~A}_{2}\right) \leq \mathrm{P}\left(\mathrm{~A}_{1}\right)+\mathrm{P}\left(\mathrm{~A}_{2}\right) \quad \text { Case for } \mathrm{n}=2
$$

Mathematical Induction: Suppose it is true for n now show it is also true for $\mathrm{n}+1$ Case for n :

$$
P\left(\bigcup_{k=1}^{n} A_{k}\right) \leq \sum_{k=1}^{n} P\left(A_{k}\right)
$$

Case for $\mathrm{n}+1$:

$$
\begin{aligned}
& P\left(\begin{array}{l}
\bigcup_{k=1}^{n+1} A_{k}
\end{array}\right)=P\left(\bigcup_{k=1}^{n} A_{k} \cup A_{n+1}\right) \leq \sum_{k=1}^{n} P\left(A_{k}\right)+P\left(A_{n+1}\right)=\sum_{k=1}^{n+1} P\left(A_{k}\right) \\
& \therefore \quad P\left(\bigcup_{k=1}^{n+1} A_{k}\right) \leq \sum_{k=1}^{n+1} P\left(A_{k}\right) \quad \text { Q.E.D. }
\end{aligned}
$$

\#2.26 n-characters typed with Prob(incorrect character) $=\mathrm{p}$
Find: Upper bound on errors in doc?
Let $A_{i}=i^{\text {th }}$ char in error

$$
P\{(\text { any error in doc. })\}=P\left(\bigcup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} P\left(A_{i}\right)=n p
$$

\#2.32 A combination lock with 3 numbers $\{0,1, \ldots, 59\}$

$$
\begin{aligned}
\mathrm{N} & =\text { possible combinations? } \\
& =(60)(60)(60)=60^{3}=6^{3}(1000)=216,000
\end{aligned}
$$

\#2.33 Die, coin, card from a normal deck

$$
\begin{aligned}
\mathrm{N} & =\text { possible outcomes? } \\
& =(6)(2)(52)=624
\end{aligned}
$$

\#2.37 10 students occupy 10 desks? 12 desks?
$1^{\text {st }}$ has 10 choices
$2^{\text {nd }}$ has 9 choices
$\Rightarrow \quad 10$ st. and 10 desks $=10!=10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=3,628,800$
$\Rightarrow \quad 10$ st. and 12 desks $=1^{\text {st }} 12$ choices, $2^{\text {nd }} 11$ choices, \ldots

$$
\begin{aligned}
& =12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \div 2=12!\div 2=(3,628,800)(11)(12) \div 2 \\
& =239,500,800 \text { choices }
\end{aligned}
$$

\#2.45 $\mathrm{P}($ sum of 3 tosses of a die $=7)=$?
3 tosses of a die : $6^{3}=216$ choices
Sum $=7=\{(1,1,5),(1,2,4),(1,3,3),(2,2,3)\}$
$\{1,1,5\}:\{(1,1,5),(1,5,1),(5,1,1)\}=3$ outcomes
$\{1,2,4\}:\{(1,2,4),(1,4,2),(2,1,4),(2,4,1),(4,1,2),(4,2,1)\}=6$ outcomes
$\{1,3,3\}:\{(1,3,3),(3,1,3),(3,3,1)\}=3$ outcomes
$\{2,2,3\}:\{(2,2,3),(2,3,2),(3,2,2)\}=3$ outcomes
$\therefore 3+6+3+3=15$ outcomes yielding " 7 "
$P($ sum $=7)=15 / 6^{3}=15 / 216$
\#2.52

$\mathrm{x}:[-1,1]$ and $\mathrm{B}=\{|\mathrm{x}-1 / 2|<1\}$
$-1<\mathrm{x}-1 / 2<1 \Rightarrow-1 / 2<\mathrm{x}<1$

$$
0-x+2 x+2
$$

Find $\mathrm{P}(\mathrm{B} \mid \mathrm{C})$ and $\mathrm{P}(\mathrm{C} \mid \mathrm{B})$.
$P(B \mid C)=\frac{P(B \cap C)}{P(C)}=\frac{P(C)}{P(C)}=1 \quad$ and $P(C \mid B)=\frac{P(B \cap C)}{P(B)}=\frac{P(C)}{P(B)}=\frac{1 / 8}{3 / 4}=1 / 6$
\#2.61 Chips from 3 sources A, B, C with Pdef: $0.001,0.005,0.01$, respectively. What is $\operatorname{Pdef}(\mathrm{A})=$? $\quad \operatorname{Pdef}(\mathrm{C})=$?

$$
\begin{aligned}
& \mathrm{P}(\text { def chip })=\mathrm{P}(\operatorname{def} / \mathrm{A}) \mathrm{P}(\mathrm{~A})+\mathrm{P}(\operatorname{def} / \mathrm{B}) \mathrm{P}(\mathrm{~B})+\mathrm{P}(\text { def } / \mathrm{C}) \mathrm{P}(\mathrm{C}) \\
&=10^{-3} \mathrm{P}(\mathrm{~A})+5 \times 10^{-3} \mathrm{P}(\mathrm{~B})=10 \times 10^{-3} \mathrm{P}(\mathrm{C}) \\
& P(\mathrm{~A} / \text { def.chip })=\frac{P(\text { def } / \mathrm{A}) P(\mathrm{~A})}{P(\text { def .chip })}=\frac{10^{-3} P(\mathrm{~A})}{10^{-3}[P(\mathrm{~A})+5 P(B)+10 P(C)]}=\frac{P(\mathrm{~A})}{[P(A)+5 P(B)+10 P(C)]}
\end{aligned}
$$

Similarly,

$$
P(C / \text { def.chip })=\frac{10 P(C)}{[P(A)+5 P(B)+10 P(C)]}
$$

If $\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{C})=1 / 3$, then
$P(A /$ def. chip $)=\frac{1 / 3}{(1 / 3)[1+5+10]}=\frac{1}{16}$
$P(C /$ def. chip $)=\frac{(10)(1 / 3)}{(1 / 3)[1+5+10]}=\frac{10}{16}$
$P(B /$ def.chip $)=\frac{5}{16}$
\#2.69 "Systems are UP" with two controllers. P(UP) = ?
$\mathrm{P}($ System UP $)=\mathrm{P}($ at least one C UP $) \mathrm{P}($ at least 2 P$)$
$\mathrm{P}($ at least 1 C$)=1-\mathrm{P}($ both down $)=1-\mathrm{p}^{2}$
$P($ System UP $)=\left(1-p^{2}\right)\left[(1-a)^{3}+3(1-a)^{2} a\right]$
Numerical case for $\mathrm{p}=0.2$ and $\mathrm{a}=0.1$
$\mathrm{P}($ System UP $)=(1-0.04)\left[(0.9)^{3}+(3)(0.1)(0.9)^{2}\right]=(0.96)(0.972)=0.93312$
Which is an improvement over 77.8% of Ex 2.32.
\#2.71 100 bits over a BSC with $\mathrm{P}_{\mathrm{b}}=10^{-3}$ What is $\mathrm{P}(3$ or more errors $)=$?
$P($ errors $\geq 3)=1-P(2$ or fewer errors $)$

$$
\begin{aligned}
& =1-\sum_{k=0}^{2}\binom{100}{k} P_{b}^{k}\left(1-P_{b}\right)^{100-k} \quad P_{b}=10^{-3} \\
& =1-\left[\left(1-P_{b}\right)^{100}+100\left(1-P_{b}\right)^{99} P_{b}+100 \cdot 99\left(1-P_{b}\right)^{98} P_{b}^{2}\right] \\
& =1-0.99985=1.5 \times 10^{-4}
\end{aligned}
$$

Marginal for most systems.

