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Chapter 2: SIGNALS AND SPECTRA 
 
 In the previous chapter we have defined signals used in communication systems. We have classified 
them as analog or digital, baseband or bandpass, and deterministic or random, energy or power. We have 
further noted that random signals are important as far as transmission of information is concerned. In this 
chapter, we will develop mathematical descriptions for signals used in communication systems in the 
time-domain and introduce Fourier analysis in the frequency-domain. 

2.1 Line Spectra and Fourier Series  

2.1.1 Phasors and Line Spectra: 
Consider a sinusoidal (a.c.) voltage : )(tv
 )(.)( 0 φ+= twCosAtv               (2.1) 

where A is the amplitude (peak value, strength) and  is the radian frequency as defined in the previous 

chapter. The phase angle 

0w
φ  represent the shift in at the time origin: )(tv .0=t   It is clear from (2.1) that 

the voltage is periodic with a fundamental period: 00 /2 wT π=  and its reciprocal is called the 

fundamental frequency:  

  
π2

1 0

0
0

w
T

f =≡  in Hertz (Hz).        (2.2) 

The signal in (2.1) is very frequently represented by a complex exponential or phasor as it is called by the 
circuits community and it is based on Euler’s Theorem: 

          (2.3) θθθ SinjCose j .+=±

where 1−≡j and the angle is represented by its real and imaginary terms: φθ += tw0 . Then the 

sinusoidal signal of (2.1) can be with a phasor  representation by: 

         (2.4) }.Re{}Re{.)(.)( )(
0

jwtjwtj eAeeAtwCosAtv φφφ ==+= +

The first term of the product is known as the amplitude and the last one the phase of the signal.  In Figure 
2.1 we show the phasor-domain representation and the frequency-domain description. Since there is only 
one frequency value associated with this signal  or , there will be a straight line of height A at 

location  Hz in the frequency plot. In other words, we have a “line spectrum.” 

0f 0w

0f

 

Figure 2.1 Phasor and line spectral representations of a sinusoidal voltage. (Carlson: Figure 2.1-2) 

Amplitudes have always positive values and negative signs are absorbed in the phase using: 

  )(.. π±=− wtCosACoswtA         (2.5) 
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Example 2.1: Consider the following signal: 

  
)2/2.60(4)2.20(10).0.2(.7

)120(4)3/40(107)(
ππππ

πππ
−++=

+−−=
tCostCostCos

tSintCostw
 

First line of this equation is displayed in Figure 2.2. In the second line we have three terms oscillating with 
0, 20, & 60 Hz, therefore, there will be 3 harmonics located at those line frequencies and three phase 
values in phase plots. It is worth noting that the frequency-domain plots, amplitude and phase, are one-
sided or positive frequency line spectra.  

            

Figure 2.2 Time-domain, amplitude and phase plots of  in Example 2.1. (Carlson: 2.1-3) )(tw

However, we discuss Fourier series and Fourier transforms we will see that two-sided spectral 
representation incorporating negative frequency (mirror image) notion is more useful and plots from all 
analytical results and computer examples will be two-sided.  The reason for this comes from Euler’s 

result:  where z is any complex variable and z* is its complex conjugate.  With this 
in mind, we can write (2.4) as shown in Figure 2.3: 

).(2/1][ *zzzRE +=

          (2.6) 
tjwjtjwj

tjwjtwj

eeAeeA

eAeeAtwCosAtv
00

00

..2/..2/

}.Re{}Re{.)(.)( )(
0

−−

+

+=

==+=
φφ

φφφ

 

 
Figure 2.3. Phasor and Amplitude plots of (2.6) (Carlson: 2.1-4) 

 
If we work example 2.1 with two sided spectra similar to (2.6) we will obtain slightly different amplitude 
and phase plots, each with mirror images and half strengths as shown in Figure 2.4. 
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Figure 2.4 Two-sided amplitude and phase spectra of Example 2.1. (Carlson 2.1-5) 

 
Periodic Signals and Average Power: A signal   is periodic if there is a positive constant , such that )(tv 0T
                                  (2.7) tallformTtvtv )()( 0+=

The smallest value of  that satisfies the above periodicity condition is called the fundamental period 

of . A signal is aperiodic (non-periodic) if it does not satisfy (2.7).  
0T

)(tv
 
Basic Properties: 

1. A Periodic signal  has the same shape when it is observed in any other full period. )(tv
2. Periodic signals always start at −∞=t and continue all the way to  +∞=t . 
3. Period signal with a period   is also periodic with , where m is any positive integer. 0T 0mT

Energy in a real signal  is defined by: )(tv

          (2.8) dttvE ∫
∞

∞−
= )(2

If  is a complex signal, as in some communication applications, the energy definition needs to be 

modified to: 
)(tv

          (2.9) dttvE ∫
∞

∞−
= 2|)(|

However, the energy concept will not be meaningful for deterministic or periodic signals and it will result in 
infinity. For almost all of our systems applications, we use power as the notion to make meaningful 
inference about signals, systems, and their performance.  

Average Power (time-average of energy) in a real signal, if it exists, is defined by: 

  ∫
−

∞→
=

2/

2/

2 )(1 T

T
T

dttv
T

LimP    for real signals        (2.10) 

and  

  ∫
−

∞→
=

2/

2/

2)(1 T

T
T

dttv
T

LimP  for complex signals       (2.11) 

In signal processing terminology, P is the mean-squared value of  and finally, the square-root of P is 

the familiar root mean square (rms) value.  
)(tv

Important Observations: 
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1. Energy Signals: If ; i.e., signal has a finite energy then is called an energy signal. 
Note: All energy signals have ZERO power. 

∞<< E0 )(tx

2. Power Signals: If ; i.e., signal has a finite power then  is a power signal. Note: All 
power signals have INFINITE energy.  

∞<< P0 )(tx

i(t)v(t)

+

R

Example 2.2: Consider a simple resistive circuit. 
Let us compute power and energy the load resistor.   
The equation governing this resistive circuit from  
Ohm’s Law:  
   v(t)=R.i(t) 
 

The average power dissipated across this resistor is given by:  

  Watts
R

tvRtiP )().(
2

2 ==                                                  (2.12) 

and the energy dissipated across a load resistor of Ohms is equal to: R

   Joulesdt
R
tv

E ∫=
∞

∞−

2)(
                       (2.13) 

Example 2.3.A: Consider a sinusoidal signal: )(..)( 0 φ+= twSinAtx  with a period: 0/2 wT π=   

Power over one full period T is given by 

 

2/2/)./(

)22(
2
1

2
1)./()(.)/(

22
0

0
2

0
2

0

2

ATTA

dttwCosTAdttwSinTAP
TT

I

==

∫ ⎥⎦
⎤

⎢⎣
⎡ +−=+∫= φφ

     (2.14) 

Note that the second term in the integral above goes to zero. So, the power is finite. The energy in this 
signal would be the sum of the energy terms contributed from each period times the period T and there 
are infinitely many repetitions of this signal shape from minus infinity to plus infinity and the energy is: 

 ∞→+++= TATATAETotal 222

222
L                       (2.15) 

Therefore, simple sinusoidal periodic signals have infinite energy and it is a power signal. 

Example 2.3.B: Give an exponential signal  measured in volts, find its energy and power 

content. 

teAtv −= .)(

  2

0

2
2

0

222

2
2).(2.. AeAdteAdteAE ttt =
−

=∫=∫=
∞

−∞ −∞

∞−

−  Joules                   (2.16) 

which has a finite value; then must be an energy signal and it must have)(tv 0== avPP .   

Let us verify that: 
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    (2.17) 

The evaluation in the limit as  has resulted in zero power as expected. ∞→L
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2.1.2 Fourier Series: Let  be a periodic power signal with a period: )(tv 000 /2/1 wfT π==   then we 

can write its complex exponential (complex Fourier) series expansion from calculus as: 

           (2.18) ∑∑
∞

−∞=

∞

−∞=

==
n

tfjn
n

n

tjnw
n ecectv 00 2..)( π

which is known in the signals and systems community as the synthesis equation. The Fourier coefficients 
are complex quantities and they can be obtained from another equation, commonly known as the 

analysis equation: 
nc

  
nj

n

T

tfjn

T

tjnw
n

ec

dtetv
T

dtetv
T

c

θ

π

.||

).(1).(1

0

0

0

0 2

00

=

== ∫∫ −−

        (2.19) 

here the magnitude and phase (angle, argument) of these exponential Fourier coefficients are defined by: 
  

  *22 .}{Im}{Re|| nnnnn ccccc =+=        and       )
}Re{
}Im{

arctan()arg(
n

n
nn c

c
c ==θ               (2.20) 

with these we can write (2.18) in terms of amplitudes and phase terms: 
 

           (2.21) ∑∑
∞

−∞=

∞

−∞=

==
n

tfjnj
n

n

tfjn
n eecectv n 00 22 ..||.)( πθπ

Observations: 

1.  consists of phasors with amplitude  and phase )(tv || nc )arg( nn c=θ  located at frequencies: 

 This implies a two-sided line spectra in the frequency-domain and 

 is the amplitude spectrum at those frequencies. 

L,3,2,,0 0000 fffnf ±±±=
|)(| 0nfc

2. All frequencies are integer multiples (harmonics) of . This line spectra is spaced uniformly. 0f

3. The dc component is the time average of the signal:  

>=<=== ∫= )()(1)0(
00

00 tvdttv
T

ccc
T

n   

where <*> stands for the time-averaging operation. 

4. If  is real then   )(tv nj
nnn eccc θ−

− == .||*

with )}(arg{)}(arg{|;)(||||)(||| 0000 nfcnfcnfccnfcc nn −=−==−=−       (2.22) 

5. When dealing with complex signals, we combine complex conjugate pairs to generate a more 
compact form: 

∑
∞

=

++=
1

00 ).2(.|2|)(
n

nn ntfCoscctv θπ          (2.23) 

 which is known as the trigonometric (cosine) Fourier series.  
 
2.1.3 Important Signals used in Communications: 

Unit-step function  and the generic step function are defined by the following inequalities: )(tu

   and                                  (2.24) 
⎩
⎨
⎧

<
>

=
00
01

)(
t
t

tu
⎩
⎨
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0 0

1
)(

tt
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ttu
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00 =t

     

)( 0ttu −

t

00 >t
)( 0ttu −

t

00 <t

 

)(tu

t

Note: u(t) is undefined at t=0; i.e., it is discontinuous at zero. 
 
Unit-impulse (Dirac Delta) function: is a limiting behavior of a narrow pulse at origin with an area equal 
to unity. 

)(tδ

                        (2.25) 
⎩
⎨
⎧

≠
=

== → 00
01

),(lim)( 0 t
t

twft wδ

1/w

 
 Area= 1 unit= w(1/w)

w
t  t

δ(t)

0

 f(w,t)

  

In other words, Dirac Delta function has a zero width and infinite height with unit area. This description of 
delta function is a conceptual definition. However, the formal definition of a unit impulse function is 
normally done through what is known as the Sifting Theorem in the field of applied mathematics or the 
sampling property in the signal processing community. 
Sifting Theorem definition of a unit impulse (delta) function: 

   ∫ −=
∞

∞−
dttttftf )().()( 11 δ                        (2.26) 

f )( t

1tt =
)( 1tf

1tt =  

Unit-sample sequence:     

      and      (2.27) 
⎩
⎨
⎧ =

=
Otherwise

nif
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][δ
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⎨
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≠
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=−
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kn
0
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][δ
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δ(n)

 n

     

      

                               δ(n-2)

     -2     -1      0     1      2                                                 
 

     n-2    -1     0       1      2

    1                                                                                                                      1                      
 f(0.5)=???

 

Any discrete signal  can be represented by a sum of appropriately weighted unit-sample functions:  ][nf

∑ −=
∞

−∞=m
mnmfnf ][].[][ δ            (2.27) 

where  is the weight at location n=m and the delta function represents the unit-sample to isolate the 

signal at that point & only at that point. 
][mf

Unit-step and generic step sequences: 

     and               (2.28) ∑ −=
⎩
⎨
⎧ ≥

=
∞

=0
][

0
01

][
m

mn
Otherwise

nif
nu δ

⎩
⎨
⎧

<
≥

=−
0

0
0 0

1
][

nnif
nnif

nnu

 
%Example 2.4: Unit step sequence 
 

n=-10:1:20;          
f=zeros(n); 
f(11:31)=1; 
axis([-10,20,-1,2]); 
stem(n,f,) 
xlabel ('sample number, n'); 
ylabel ('u[n]’); 
ptitle('Unit step sequence'); 

 
 
 
 
 
 
 
 
Exponential sequences (Real): 

         (2.29) BaseaandAmplitudeAwhereaAnx n === .][

%Example 2.5: Decaying Exponential sequence alternating sequence 
n=-10:1:10; 
exp =10*(.9).^n; 
axis([-10 10 0 30]); 
stem(n,exp)  
xlabel('sample number, n');  
ylabel ('exp(n)');  
title('Exponential sequence ') 
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% Alternating decaying sequence 
n=-10:1:10; 
exp2 =10*(-.8).^n; 
axis([-10 10 -30 30]); 
stem(n,exp2); 
xlabel('sample number, n'); ylabel ('alternating exp(n)');  
title('Exponential sequence ') 
grid; axis 

 

         
 

2.1.4 Discrete Sinusoidal Signal: 
 )/2(.)(.][ 0 ϕπϕ +=+Ω= NnSinAnSinAnx       (2.30) 

where   .0 FrequencylFundamentaDigitalandPeriodN =Ω=

Example: 2.6: Effects of Sampling Rate on: )/2(.][ NnSinAnx π=  where  .4,8,16 SamplesN =  

0 2 4 6 8 10 12 14 16
-5

-4

-3

-2

-1

0

1

2

3

4

5

Sample Number n

A
*S

in
(2

*p
i*

n/
N

)

Discrete Sinusoids

 
 
Exponentially Modulated Sinusoidal Sequences: 

 )2(..][ θπ
+= n

N
CosaAnx n         (2.31) 

where: 

   AmplitudeA = SignalModulatedofEnvelopean =

 SignalofComponentyOscillatorn
N

Cos =+ )2( θπ
; 0== nwhenPhaseInitialθ  
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Example: 2.7: Exponentially modulating Sinusoidal Sequence 

n=0:1:50; 
exp=10*(0.9) .^n;   g=cos(2*n*pi/16);   h=exp .* g; 
stem(n,h); 
xlabel('sample number, n');  ylabel ('g[n]');  title('Exponentially Modulated Signal') 
 

 
 
Sync function:  
  

 
πλ

πλλ )()( SinSinc ≡        (2.32) 

which frequently occurs in Fourier analysis in integrals computing : nc

 ).(
.

).(
)(

.2
11

0
0

0.2.2

0

2/

2/

.2

0

0

0

fTSinc
fT

fTSin
ee

fTj
dte

T
ftjftj

T

T

ftj π
π

π
π

πππ ==−−=∫
−

     (2.33) 

and  Sinc function has nulls (zero-crossings, attains value of zero, etc.) at integer multiples of .λ  
 
Example 2.8: Let us perform the Fourier analysis of a Pulse Train (periodic pulses) with a period . 0T

 
 

Figure 2.5 Rectangular pulse train with a period . (Carlson: 2.1-7) 0T

Since the pulse train is periodic , we can write:  

    )()( 0nTtvtv +=

where     
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  ∑
∞

=
++=

⎩
⎨
⎧ <

=
1

)(.
0

2/
)( 000

n
tnwCosCC

otherwise
atifA

tv n θ ,      (2.34) 

This is valid for each and every period. The interval ]2/,2/[ ττ−  is called the "ON-TIME" and the ratio: 

0/Tτ  is called the duty cycle of a pulse.  Let us now compute the Fourier coefficients: 
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−
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If we use the well-known trigonometric identity: ⎟
⎠
⎞⎜

⎝
⎛ −−= θθθ jeje

j2
1sin  we obtain:  

  

)(
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nww
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==

==

          (2.35) 

Similarly, the D.C. component is computed as:  

  
00

0

2/

2/
.1.

T
Adt

T
AC ττ

τ
=∫

−
=            (2.36) 

Magnitude and phase spectrum of these terms (2.35 and 2.36) are shown in Figure 2.6 for a 25% duty 
cycle case: .4/1/ 0 =Tτ . 

 
Figure 2.6 Magnitude and phase spectra of a pulse train with 25% duty cycle. (Carlson 2.1-8)  
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When we substitute these coefficients into the voltage equation above we obtain a series expansion 
representation of this pulse train function . )(tv

  ∑
∞

=
++=

1
)2().()( 000

00 n
tnfCosnfSinc

T
A

T
Atv θπττ

       (2.37) 

It is important to note that we have written a very non-linear function in the form of periodic pulses in terms 
of always-continuous trigonometric functions. In order this representation to be perfect the upper limit in 
the sum has to be infinity, which is not very practical. In many applications, a large number is used. For 
instance, Carlson has implemented the final result in (2.37) as shown in Figure 2.7 for N=3, 7, and 40. It is 
also important to note that all the coefficients are real. In other words, 0=θn  is valid for all integer values 
of n.  First few terms of this implementation (2.37) can be written as: 

  L+++++++= )3(
3
2)3()(2

4
)( 000000 θ

π
θ

π
θ

π
twCosAtwCosAtwCosAAtv    (2.38) 

 

 
Figure 2.7 Fourier series reconstruction of a rectangular pulse train with finite terms. (Carlson 2.1-9) 
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2.1.5 Dirichlet Existence Conditions and Gibbs Phenomenon:  Fourier analysis exists if 

1. The signal is absolutely integrable with a finite value:  ∞<∫
><

dttv
T0

)(  

2. Extrema of  must be finite for any interval of . (Minima and Maxima points) )(tv ],[ 21 tt
3. Discontinuities over any finite interval of  must be also finite with each discontinuity of finite 

size. (Differentiable) 
],[ 21 tt

Even if a signal satisfies the above conditions, the finite series (summation does not go to ∞ ), as it is the 
case for all real-life scenarios, has overshoots and undershoots at each point of discontinuity as seen in 
Figure (2.7).  
 
2.1.6 Parseval’s Power Theorem and Superposition: Average power of a periodic signal is conserved 
through Fourier analysis. Consider the power of a periodic signal across 1 Ohm resistor: 

 dttvtv
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       (2.39) 

Using Fourier series expansion on conjugate signal and substituting in the last equation:  
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   (2.40) 

which shows that the power is conserved (not lost) during Fourier representation and it can be computed 
by squaring adding the magnitudes of line spectra. The last point is simply the principle of superposition 
for average power.   
 

2.2 Fourier Transform for Continuous Signals 
If is the voltage across a 1 Ohm resistor, the total delivered energy is found by integrating the 
instantaneous power: 

)(tv

     (2.41) ∫
∞

∞−

≡ dttvE 2|)(|

if the above integral exists and results in ∞<< E0  then is an energy signal and it is also a non-

periodic (aperiodic) signal. If it satisfies the Dirichlet conditions then it must have Fourier Transform, which 
is defined by: 

)(tv

     (2.42a) ∫
∞

∞−

−== dtetvtvFfV ftj .2).()]([)( π

or in the angular frequency representation: 

     (2.42b) ∫
∞

∞−

−== dtetvtvFwV jwt).()]([)(

These forward transforms are also known as the ANALYSIS EQUATION in the community. The time 
function  can be recovered from   or   through inverse transform process and it is called 
SYNTHESIS EQUATION: 

)(tv )( fV )(wV
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     (2.43a) ∫
∞

∞−

− == dfefVfVFtv ftj .21 ).()]([)( π

and from the angular frequency representation: 

  ∫
∞

∞−

− == dwewVwVFtv jwt).(
2
1)]([)( 1

π
   (2.43b) 

The expressions in (2.42) and (2.43) are known as the Fourier pairs and there are tables for many 
frequently observed signals. For instance, there is one in Table A.2 in the appendix A of these lecture 
notes and in pages 780 and 781 of Carlson text. 
 

1. Fourier transform is a complex function with the amplitude spectrum term: |  and the phase 

spectrum: , which implies that we need to plot two different spectra in the frequency-
domain for a given time signal.  

)(| fV
)(arg fV

2. The value of  at d.c., or at )( fV 0=f  equals the net area under the plot of  : )(tv

∫
∞

∞−

= dttvV )()0(         (2.44) 

3. If  is real then )(tv
)()( * fVfV =−         (2.45) 

with properties: 
  and  |)(||)(| fVfV =− )(arg)(arg fVfV −=−    (2.46) 

amplitude spectrum has even-symmetry, while phase spectrum shows odd-symmetry. 
 

Example 2.9: Find the Fourier transform of a single rectangular-pulse. This function is also known as a 
rectangular gate or a time-window function and it is shown in many ways, one of which is )/( τtΠ  as 
shown in Figure 2.8. 

                      Π (t)

   -τ/ 2                           τ/2                     t

                      
                      1.0

            

                                  G(w)

                                  τ

−4π/τ      −2π/τ                 2π/τ          4π/τ     6π/τ    8π/τ
 

 
Figure 2.8 Rectangular pulse signal and its Fourier transform. 

 
Let us compute the Fourier transform  of this time-window or a rectangular gate function: )(wG
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which is real for all values of w.  Here Sinc and Sa represent the Sinc and sampling functions, 
respectively, and they are defined by: 

  
x

xSinxSinc
π

π
=

)()(    and  
x

xSinxSa )()( =   

It is easy to see that the phase term  (argument) is uniformly zero.      

  .0)()( wallforwwArgG == φ  

Also, 90 percent of the energy of the total spectrum is under the MAIN LOBE. From the results of this 
example we can conclude that:  

   )2/(.)/( πτττ wSinct ⇔Π .  

It is worth noting that the Carlson text has the same problem analyzed in terms of  and the result is 
given in (9b) as: 

f

   )(..)( ττ fSincAfV =  
which is equivalent to the result above. 
 
Example 2.10: Find the Fourier transform of a sinusoid: )(.)( twCosAtx c=  

Using the trigonometric identity:  to rewrite our signal. ).(2/1)( jxjx eexCos −+=

)]()([)](2)(2).[2/(

]..[
2

).(
2

)}(.{

cwwcwwAcwwcwwA

dtjwte
tcjw

edtjwte
tcjw

eAdtjwte
tcjw

e
tcjw

eAtcwCosAF

++−=++−=

∫
∞

∞−

−−
+∫

∞

∞−

−=∫
∞

∞−

−−
+=

δδππδπδ
 
which is a pair of impulses of height  located symmetrically at .  πA cwm
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Figure 2.9 Single sinusoid and its Fourier transform 

 
Fourier transform is sometimes expanded into its real and imaginary terms: 
            (2.47) )()()( fjVfVfV oe +=
where  

  and        (2.48) ∫
∞

∞−

= dtCoswttvfVe .).()( ∫
∞

∞−

−= dtSinwttvfVo .).()(

© Hüseyin Abut, August 2006  



 42

are the cosine and sine Fourier integrals. If the signal is an even function in the time-domain then: )(tv

  and  ∫
∞

∞−

== dtCoswttvfVfV e .).(2)()( 0)( =fVo        (2.49) 

Similarly, for a signal with an odd-symmetry in the time-domain, we have: )(tv

  and        (2.50) 0)( =fVe ∫
∞

∞−

−= dtSinwttvjfVo .).(.2)(

Example 2.11: Find the Fourier transform of a causal (one-sided) exponential pulse. 

            (2.51) 
⎩
⎨
⎧

<
>

=
−

00
0)(

t
tAetv

bt

       (2.52) ∫∫∫
∞

−−
∞

−−
∞

∞−

− ===
00

22 ..).()( dteAedteAedtetvfV jstbtftjbtftj ππ

where the last integral is the Laplace transform of  with )(tv fjs π2= .  We can find the above integral 
from Laplace or Fourier transform tables as: 

  
fjb

A
sb

AfV
π2

)(
+

=
+

=           (2.53) 

This complex results is not useful, we can find even and odd terms or more appropriately, the amplitude 
and phase terms: 

 22 )2(
)}({)(

fb
bAfVREfVe π+

== ;  22 )2(
2)}(Im{)(

fb
fAfVfVo π

π
+

−==     (2.54) 

  
22

22

)2(
)()(|)(|

fb

AfVfVfV oe
π+

=+= ;    
b
f

fV
fV

fV
e

o π2arctan
)(
)(

arctan)(arg −==     (2.55)  

          

Figure 2.10 Causal exponential signal and its amplitude and phase spectra. (Carlson 2.3-3) 
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Rayleigh’s Energy Theorem:  Energy is pf a signal is related to its spectrum by:  

 dffVdtfVfVE
2* )()().( ∫∫

∞∞

==                        (2.56) 

and the term  is known as the Energy Spectral Density or the distribution of energy in the 
frequency domain. For instance, the energy spectral density and the energy is simply found from the 
result of Example 2.9: 

2|)(| fV

  τττ
τ

τ

τ

τ

2
/1

/1

22
/1

/1

2 .92.0..)(|)(| AdffSincAdffV ∫∫
−

−

−

−

==

Notes: 
1. The plot in that example was over fw π2= , therefore scaling was needed and 
2. Last integral is found from numerical computation since it is not available in a closed form. 

3. Since the total energy in time domain was  then 90% of total energy is under the 

mail lobe as seen in  Figure 2.11. 

,2τAEt =

 
Figure 2.11 Energy spectral density of a rectangular pulse. (Carlson 2.2-4) 

Duality Theorem:  If  are Fourier pairs and if there is a time-function  related to  the 

functional form  by 

)()( fVtv ⇔ )(tz
)( fV

    then )()( tVtz = )()]([ fvtzF −=         (2.57) 

Example 2.12: Find the Fourier transform of a sync pulse using Duality Theorem. Consider the sync pulse 
defined by:  WtSyncAtz 2.)( =

 

Figure 2.12 Sync pulse in the time-domain and its spectrum. (Carlson 2.2-5) 

From the duality principle: 

  )/(.
2

)( τt
W
Atv Π=  and )2.(.

2
)( WtSinc

W
AfV τ=  

with ,2);()( WtVtz == τ  we have: 
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  )
2

(
2

)()]([
W
f

W
AfvtzF −

Π=−=   and )
2

(
2

)(
W
f

W
AfZ Π=      (2.58) 

We can see that the time-unlimited sync pulse results in a band-limited spectrum in the frequency domain. 
There are several important functions and their Fourier transforms used in communication and signal 
processing which are listed in Appendix B of these lecture notes. 

 
2.3 Time and Frequency Relations 

2.3.1 Superposition Theorem:  If  are a pair of constants and },{ 21 aa
    then )(.)(.)( 2211 tvatvatv += )(.)(.)( 2211 tVatVafV +=      (2.59) 

2.3.2 Time Delay:  If a signal  is delayed by in a system to yield )(tv dt )( dttv − , then in the frequency-

domain the phase spectrum is shifted by a linear phase with a slope dtπ2−  to result: 

            (2.60) dtfj
d efVttv .2).()( π−⇔−

Note that the amplitude spectrum is NOT changed through time-delay due to the fact that: 

        (2.61) |)(|1.|)(|||.|)(||).(| .2.2 fVfVefVefV dd tfjtfj === −− ππ

 
2.3.3 Scale change in time-domain is equivalent to inverse scaling in the frequency-domain: 

  0)(.
||

1)( ≠⇔ a
a
fV

a
atv           (2.62) 

Depending upon whether or 1|| >a 1|| <a  the process could result in compression or expansion in time 

domain and the reverse occurs in the frequency-domain.  
 
2.3.4 Frequency Translation and  Modulation is the dual of the time-delay result of (2.60). That is: 

            (2.63) 
tfj

c
cetvffV .2).()( π−⇔−

As it is apparent from above, shifting the information from its original frequency range to the neighborhood 
of a frequency  (usually called carrier frequency) is equivalent to multiplying a signal in the time domain 

by an exponential factor . 
cf

 
Figure 2.13 Frequency-translation (Modulation) of a bandlimited signal. (Carlson 2.3-2) 

                
More important form is the combination of two complex exponentials (multiplication by a cosine function) 
is used and known as the modulation theorem: 

   )(
2

)(
2

)2().( c

j

c

j

c ffVeffVetfCostv ++−⇔+
− φφ

φπ       (2.64) 

In the case of modulation used in radio communication, it is common to use 0=φ , which results in the 

well-known result: 
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   )(.2/1)(.2/1)2().( ccc ffVffVtfCostv ++−⇔π        (2.65) 

so the original spectrum is split equally to the neighborhoods of  and cf .cf−  The image in the 

neighborhood of negative frequency  is known as the mirror image spectrum and cannot be seen in 

the measurements but it is known to be out there. 
cf−

 
Example 2.13: Find the spectrum of an RF pulse, which is formed as the product of a gate function with a 
sinusoid. 

  ).2().(.)( twCostAtz cπ
τ

Π=   then  ττττ )(.
2

)(.
2

)( cc ffSincAffSincAfZ ++−=     (2.66) 

 
Figure 2.14. RF Pulse and it is frequency-translated (modulated) spectrum. 

 
2.3.5 Differentiation and Integration in Time-Domain: Consider a time-domain signal , then its 

differentials and integrals exhibit the following properties: 
)(tv

   )(.)2()( fVfjtv
dt
d n

n

n
π⇔           (2.67) 

   )(.
2
1)( fV

fj
dv

t

π
λλ ⇔∫

∞−

          (2.68) 

2.4 Convolution 
Convolution Integral: Consider a signal  is processed by a system with an impulse response  

then the output  is obtained by convolving these two functions in the time-domain: 

)(tv )(tw
)(ty

 System
w(t)input v(t) output y(t)

 

Figure 2.15 Convolution operation block diagram. 

                                  (2.69) ∫∫
∞

∞−

∞

∞−

−=−== ττττττ dtvwdtwvtwtvty )().()().()(*)()(

It is worth noting that the convolution operation is commutative, i.e., the roles of the signal  and the 

system  function can be interchanged.   

)(tv
)(tw
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Similarly, it can be shown that convolution is also associative and distributive. In other words, 
          (2.70) eAssociativtztwtvtztwtv )(*)](*)([)](*)([*)( =
  veDistributitztvtwtvtztwtv )](*)([)](*)([)]()([*)( +=+        (2.71) 
 
Example 2.14: Convolution of a causal exponential function and a ramp function as shown in Figure 2.16. 

    if  and teAtv −= .)( ∞<< t0 Tttw /)( =    if Tt <<0  

                                                                       Tttw /)()( λλ −=−  if   Tt <−< λ0  

 

 

 
Figure 2.16 Demonstration of convolution operation. (Carlson 2.4-1) 
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Case 1:  In this case, there is no overlap between the two functions, therefore, :0<t
  00)()()( <=∗= tiftwtvty

Case 2: : Tt <<0

 

TtifetTA

de
T
Adet

T
Ad

T
teAtwtvty

t

ttt

<<+−=

−=
−

==

−

−−− ∫∫∫
0)1).(/(

....)..(.)(*)()(
000

λλλλλ λλλ

 

The last set of integrals can be found in the integration tables and in the Appendix A.5 of the lecture notes. 
 
Case 3:  :Tt >

 

TtifeeTTA

de
T
Adet

T
Ad

T
teAtwtvty

TtT

t

Tt

t

Tt

t

Tt

>+−=

−=
−

==

−−−
−

−

−

−

−

− ∫∫∫
)().1).(/(

....)..(.)(*)()( λλλλλ λλλ

  

 

Table 1 Continuous Fourier Transform and Convolution Properties 
 Property Time-Domain Frequency-Domain 

1 Superposition )(.)(. 21 txbtxa +  )(.)(. 21 wXbwXa +  

2 Time Delay )0( τ−tx  0).( τ− jwewX  

3 Frequency-
Translation 

tjwetx 0).(  )( 0wwX −  

4 Scale Change )(ktx  )/(.||/1 kwXk  

5 Time-Differentiation )(tx
dt
d

n

n
 )(.)( wXjw n  

6 Time-Integration ∫ αα
∞−

t
dx ).(  )().0(.)(.1 wXwX

jw
δπ+  

7 Duality )(tX  )(.2 wx −π  

8 Parseval’s Theorem dttxdttxtx ∫=∫
∞

∞−

∞

∞−

2* |)(|)().(  dwwXdwwXwX ∫
π

=∫
π

∞

∞−

∞

∞−

2* |)(|
2
1)().(

2
1

9 Time-Convolution )(*)()(*)( txththtx =  )().()().( wXwHwHwX =  

10 Time-Multiplication )().( tptx  )(*)(.2/1 wPwXπ  

11 Analog Modulation )().( tWCostx c  )]()(.[2/1 00 WwXWwX ++−  

  λλλλλλ ddtetwvdtedtwvtwtvF jwtjwt ])().[(.])().([)](*)([ ∫ ∫∫ ∫
∞

∞−

∞

∞−

−
∞

∞−

∞

∞−

− −=−=

∫ ∫
∞

∞−

∞

∞−

−− ==== )().().2/1()().()(].)([])().[()](*)([ wWwVfWfVfWdevdefWvtwtvF jww πλλλλ λλ

which is the expected result #10 in the table above. 
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Example 2.15. Numerical convolution of two time-functions of different length. 

-5 0 5 10 15 20
0

0.5

1
Input Signal

n

x(
n)

-5 0 5 10 15 20
0

0.5

1
Impulse Response of the System

n

h(
n)

-5 0 5 10 15 20
0

5

10
Output Signal

n

y(
n)

% Convolution of two-discrete finite pulses
n=-4:20; 
x=zeros(size(n)); 
h=zeros(size(n)); 
x(2:8)=ones(size(n(2:8))); 
h(5:13)=ones(size(n(5:13))); 
 
%Plot of the input and system 
axis([-4,20,0,2]) 
subplot(311),stem(n,x); 
grid; 
title('Input Signal');  
xlabel('n');  
ylabel('x(n)'); 
subplot(312),stem(n,h,'g'); 
grid; 
xlabel('n');  
ylabel('h(n)'); 
 
title('Impulse Response of the System');  
 
%convolution 
y=conv(h,x); 
subplot(313),stem(n,y(5:29),'r');grid; 
title('Output Signal');  
xlabel('n'); ylabel('y(n)'); 
 

Example 2.16: Let us use this theorem to find the impulse response and the unit-step response of a 
system : For the case of impulse response we assume that the input is an impulse function: )(th

).()( ttx δ=  Then from the definition of the convolution operation we write: 

 ∫
∞

∞−

=−=== )()().()(*)()(*)()( thdththtthtxty τττδδ                      (2.71) 

The last integral above is obtained from the Sifting Theorem discussed earlier. It is important to note that 
the term “impulse response” gets its name from pushing a unit-impulse through a system and measuring 
its response.  Similarly, the unit-step response is computed by using a unit-step signal as input: )(tu

                        (2.72) ∫ ∫
∞

∞− ∞−
=−=

t
dxdtuxtutx τττττ )()().()(*)(

It is not difficult to see the convolution of a signal by a unit-step is equivalent to passing the signal 
through a perfect integrator. 

)(tu

Example 2.17: Ideal Low-pass Filter. Consider a rectangular signal )./(.)( τtAtv Π=  Its Fourier 

transform is a sync function: )(..)( ττ fSincAfV = , which has tails all the way to infinity in both 

directions. Let us multiply this by a rectangular function (ideal low-pass filter) in the frequency-

domain: 
)( fV

 )2(.2)()
/2

()(
τττ
tSinctwffW =⇔Π=      )(*)()( twtvtz =⇒  
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     ⇒= )().()( fWfVfZ λ
τ
λ

τ

τ

τ
dSincAtz

t

t

).2(.2)(
2

2

∫
+

−

=  

 
Figure 2.16 Output of an ideal low-pass filter to a sync signal. 

Fourier Analysis of Impulse and Pulse Functions: Consider an impulse function in time domain (Dirac 
delta function)  )(tδ : 

           (2.73) 1.).()]([ 0. ==−= −
∞

∞−

−∫ jwjw edettF ττδδ τ

Fourier transform of a unit-step function. As we can see from the sketch below, we can write our unit-step 

function as a sum of two simple functions: )(.
2
1

2
1)( tSgntu +=  

 
            u(t)                                                         Constant                                           sgn(t)

    1.0                                                                0.5                                                     0.5
            
                                 t                                                          t                                    -0.5                       t

+=
 
 
 
 
 
 

Here is the sign indicator function. But we can also write the derivative of this expression: )(tSgn

  )()}(.2/1{ ttSgn
dt
d δ=      or equivalently:    1)](.2/1[).( =tSgnFjw ,  

which results in a form:  
  fjtSgnF π2/1)](.2/1[ =    and    )().2/1()()(2).2/1(]2/1[ fwwF δπδπδ ===   

Finally, we combine these two transforms to obtain:    

       
fj

ftuF
π

δ
2
1)(.

2
1)]([ +=            (2.74) 

Similarly, we can compute the following results: 
  If   Atv =)( )(.][)]([ fAAFtvF δ==⇒        (2.75) 

  If         (2.76) tjwceAtv .)( = )(.].[)]([ c
tjw ffAeAFtvF c −==⇒ δ

  If  tCoswAtv c.)( =
)}()(.{

2

].(
2

[].[

cc

tjwtjw
c

ffffA

eeAFtCoswAF cc

−+−=

+=⇒ −

δδ
      (2.77) 

Fourier Transform pairs of many frequently used signals are given in Table A.2 of the appendices of these 
lecture notes. 
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2.5 Modulation Theorem 

It is used for translating the information from the  base-band frequencies to a band-pass region for 
efficient communication purposes and it is achieved by the multiplication of the information signal  

with a carrier signal : 
)(tx

)(tm

X
x(t)                                   y(t)

                                                      (2.78a)  )().()( tmtxty =
X(w)                    Y(w            ) 

It is not difficult to see from Fourier properties in Table A.1, this is 
equivalent to a convolution operation in the frequency-domain: 

                 m(t)    M(w)

                          (2.78b)  )()().2/1()( wMwXwY ∗π=
This can be rewritten explicitly as a Fourier Integral: 

 ∫ υυ−
π

=∫ υυ−υ
π

=
∞∞

dwXwMdwXMwY )()(
2
1)()(

2
1)(                                                            (2.79) 

 Example 2.18: Given a base-band signal with a generic spectrum as shown. Let us modulate it with an 
ideal impulse train and investigate what happens to the spectrum after modulation. In the t-domain the 
output of the modulator (mixer) is the product: )().()(

0
tptxtS T= , where the input signal is  and the 

modulating impulse train 

)(tx

∑
∞

−= )()( 00
nTttpT δ  acts as a sampling function to yield: 

  ∑
∞

−= )()()( 0nTttxtS δ                         (2.80) 

However, the frequency-domain interpretation of this process is much more informative. To see that let us 
first take the Fourier transform of the ideal impulse train: 

 ∑ −δ=∑
π

−δ
π

=∑ −δ==
∞∞∞

)()2(2})({)}({)( 00
00

000
kWwW

T
kw

T
nTtFtpFwP TT  

and the sampled-output spectrum: 

  )(1)2()(.2.
2
1)( 0

000
∑ −=∑

π
−δ∗

π
π

=
∞

−∞=

∞

−∞= kk
kWwX

T
k

T
wwX

T
wS                     (2.81) 

)(wS  is a periodic replica of the baseband spectrum  ).(wX

Example 2.19: Given a generic baseband signal with a spectrum as shown and we modulate it with a 
cosine signal (sinusoidal oscillation). Now let us study what happens to the spectrum after modulation. 

                                                T0. S(w)
                                                                              Bandpass (modulated) signal

    -w0               -w0 /2  -w1                                 w1   w0 /2                       w0                    w                                

The mirror image of Bandpass

 Baseband
    Signal

Figure 2.17 Generic baseband signal in frequency-domain and its translations. 
 

                (2.82) ])()().[2/1()cos().()( 00
0000

θ−θ ++−⇔θ+= jj ewwXewwXtwtxty
Let us consider the special case for 2/0 π−=θ  then we have: 

                 (2.83) ])()().[2/1(sin).()( 2/
0

2/
00

ππ− ++−⇔= jj ewwXewwXtwtxty
We note that the only difference between these two cases is a phase shift (delay) of .  2/π
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2.6 Discrete-Time Fourier Transform and its Inverse 

2.6.1 Forward DTFT: The DTFT is a transformation that maps Discrete-time (DT) signal x[n] into a 
complex valued function of the real variable , namely: w

        (2.84) ℜ∈∑=
∞

−∞=

− wenxwX
n

jwn ,][)(

• Note is a discrete-time instant, but  represent the continuous real-valued frequency as in the 
continuous Fourier transform. This is also known as the analysis equation. 

n w

• In general  CwX ∈)(
• },{)()2( πππ −∈⇒=+ wwXnwX  is sufficient to describe everything.    

•  is normally called the spectrum of  with: )(wX ][nx

                             (2.85)  
⎩
⎨
⎧
∠

⇒= ∠
angleSpectrumPhasewX

SpectrumMagnitudewX
ewXwX wXj

,:)(
|:)(|

.|)(|)( )(

• The magnitude spectrum is almost all the time expressed in decibels (dB): 
          (2.86) |)(|log.20|)(| 10 wXwX dB =
 
2.6.2 Inverse DTFT: Let  be the DTFT of  Then its inverse is inverse Fourier integral of 

 in the interval 

)(wX ].[nx
)(wX ).,{ ππ−  

 ∫=
−

π

ππ
dwewXnx jwn)(

2
1][            (2.87) 

This is also called the synthesis equation. 

2.6.3 Convergence of DTFT: In order DTFT to exist,  the series  must converge. In other 

words: 

∑
∞

−∞=

−

n

jwnenx ][

  must converge to a limit  as ∑=
−=

−M

Mn

jwn
M enxwX ][)( )(wX .∞→M      (2.88) 

Convergence of  for three difference signal types have to be studied: )(wX m

• Absolutely summable signals:  is absolutely summable iff . In this case, 

 always exists because: 

][nx ∞∑ <
∞

−∞=n
nx |][|

)(wX

        (2.89) ∑ ∞<∑ =∑ ≤
∞

−∞=

∞

−∞=

−∞

−∞=

−

nn

jwn

n

jwn nxenxenx |][|||.|][||][|

• Energy signals: Remember  is an energy signal iff  We can show that ][nx .|][| 2 ∞<∑≡
∞

−∞=n
x nxE

)(wX M  converges in the mean-square sense to  :)(wX

          (2.90) 0|)()(| 2 =∫ −
−∞→

dwwXwXLim M
M

π

π
Note that mean-square sense convergence is weaker than the uniform (always) convergence of (2.78). 

• Power signals:  is a power signal iff  ][nx
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∞<∑
+

=
−=∞→

N

NnN
x nx

N
LimP 2|][|

12
1

         (2.91) 

• In this case,  with a finite power is expected to have infinite energy. But ][nx )(wX M  may still 

converge to  and have DTFT.   )(wX
• Examples with DTFT are: periodic signals and unit step-functions. 
•  typically contains continuous delta functions in the variable   )(wX .w

2.6.4 DTFT Examples: 

Example 2.20 Find the DTFT of a unit-sample ].[][ nnx δ=   

         (2.92) 1][][)( 0 ==∑=∑= −∞

−∞=

−∞

−∞=

− j

n

jwn

n

jwn eenenxwX δ

Similarly, the DTFT of a generic unit-sample is given by: 

          (2.93) 0][]}[{ 00
jwn

n

jwn eennnnDTFT −∞

−∞=

− =∑ −=− δδ

Example 2.21 Find the DTFT of an arbitrary finite duration discrete pulse signal in the interval: :21 NN <  

  ][][
2

1

kncnx
N

Nk
k −∑=

−=
δ

Note:  is absolutely summable and DTFT exists: ][nx

        (2.94) jwkN

Nk
k

n

jwnN

Nk
k

n

jwnN

Nk
k ecekncekncwX −

−=

∞

−∞=

−

−=

∞

−∞=

−

−=
∑=∑ −∑=∑ −∑=

2

1

2

1

2

1

}][{]}[{)( δδ

Example 2.22 Find the DTFT of an exponential sequence:  It is not 
difficult to see that this signal is absolutely summable and the DTFT must exist. 

.1||][][ <= awherenuanx n

 jwn

njw

n

jwnn

n

jwnn
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aeeaenuawX
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∞

=
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=
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−
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=∑=∑=∑=

1
1)(.][.)(

00
     (2.95) 

Plot of the magnitude spectrum for DTFT and )(wX M  for: 8.0=a  and },20,10,5,2{ DTFTM =∞= is 
illustrated in Figure 2.18 

 
Figure 2.18 Magnitude spectrum for DTFT 

 

© Hüseyin Abut, August 2006  



 53

2.7 Discrete Fourier Transform and its Inverse 

2.7.1 DFT: It is a transformation that maps an N-point Discrete-time (DT) signal x[n] into a function of the 
N complex discrete harmonics. That is, given 1,,2,1,0];[ −= Nnnx L , an N-point Discrete-time signal 
x[n] then DFT is given by (analysis equation): 

 1,,2,1,0][)(
1

0

2

−=∑=
−

=

−
NkforenxkX

N

n

nk
N

j
L

π

        (2.96)  

and the inverse DFT (IDFT) is given by (synthesis equation): 

 1,,2,1,0)(1][
1

0

2

−=∑=
−

=

+
NnforekX

N
nx

N

k

nk
N

j
L

π

       (2.97) 

Notes: 
1. These two equations form DFT pair.  
2. They have both N-point resolution both in the discrete-time domain and discrete-frequency 

domain. 
3. Always the scaling factor  is associated with the synthesis equation (inverse DFT). N/1
4.  is periodic in )(kX N  or equivalently in Nk /2π=Ω ;  that is 

 )())(2()2()()( NkXNk
N

XXXkX kk +=+=+Ω=Ω=
ππ       (2.98) 

5. x[n] determined from (2.86) is also periodic in N  as shown in Figure 2.19:    ][][ Nnxnx +=   

 
Figure 2.19 Periodic behavior of DFT. 

2.7.2 DFT Examples: 

Example 2.23: Compute DFT of the following two sequences: }2,1,3,1{][ −−=nh and }1,0,2,1{][ −=nx   

Note:  jeeeN jjNj ===⇒= 2/4/2/24 πππ

Let us use this information in (2.98) to compute DFT values: 3,2,1,0][)(
3
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2 == ∑
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−
kforenhkH

n

nkjπ
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Similarly, 
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31].3[].2[]1[]0[)3(
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2/932/3
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jexexexxX

exexexxX
jjj

jjj

+=+++=
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πππ

πππ
 

• Watch for the conjugate symmetry of terms; i.e., complex harmonics come in pairs. 

Example 2.24: Given a discrete-time pulse signal .2.0])3[(])1[(][ sTwhereTnuTnunTx =−−+=  

(a) Use a six-point DFT to compute  (b) Compute the IDFT of   ).(kX ).(kX

Let us start the samples at  then the six samples of the periodic extension would be 2.0−=t
]1,0,0,1,1,1[][ =nx . Then the script is simply: 

% Example 2.33 
% Part (a) 
x=[1,1,1,0,0,1]; N=size(x,2); T=0.2; 
stem(x); X=fft(x); disp(X); 

Answers>>   Columns 1 through 4  
   4.0000             1.5000 - 0.8660i  -0.5000 + 0.8660i        0     
 Columns 5 through 6  
  -0.5000 - 0.8660i   1.5000 + 0.8660i 
 

Mag=abs(X); Phase=angle(X); 
% Plots; figure; 
plot(n,Mag,'*'); figure; 
plot(n,Phase,'+'); 

% Part (b) 
xr=ifft(X); 
figure; 
stem(xr); 

 
Input signal is exactly recovered by means of a full DFT and IDFT process. 
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