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Appendix C: Supplementary Problems on Modulation Systems 

C.1. Examples on Amplitude Modulation Systems  

Example C.1.1:  MATLAB Demonstration of Double Sideband Suppressed Carrier (Ordinary) AM. Let 
us assume that the message has the following three values in specified intervals and the carrier is a 
sinusoid: 
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with Hzf c 250= , Secondst 15.00 = , and the modulation index: 85.0== µmhu . Furthermore, 
suppose that the signal has been corrupted by a Gaussian noise with an SNR of 10.0 dB.  

Let us note that that  0.2|)(max(| =tx  and re-write the signal in terms of rectangular windows in the 
time-domain, we have: 
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Term-by-term FT and re-organization of various terms results in: 

 )21)(05.0(05.0)( 1.005.0 fjfj efSincewX π−π− −=  
The corresponding modulated signal (convolution in frequency-domain) turns out to be: 
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Power budget of the message and the normalized message: 
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The modulation efficiency for the specific values given and computer is: 
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Finally, the power in the modulated signal is computed as: 
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%  Example on AM Modulation Process 
% am_mod.m  
% Message Signal: +1 for 0 < t < t0/3; -2 for t0/3 < t < 2t0/3 and zero: otherwise. 
t0=.15; ts=0.001;                        % signal duration and sampling interval 
fc=250; fs=1/ts;                         % carrier frequency and sampling frequency 
snr=10;                                % SNR in dB (logarithmic) 
a=0.85;                                % Modulation index 
t=[0:ts:t0];                           % time vector 
df=0.2;                                % required frequency resolution 
snr_lin=10^(snr/10);                  % SNR 
 
m=[ones(1,t0/(3*ts)),-2*ones(1,t0/(3*ts)),zeros(1,t0/(3*ts)+1)]; % message signal 
c=cos(2*pi*fc.*t);                        % carrier signal 
m_n=m/max(abs(m));                      % normalized message signal 
[M,m,df1]=fftseq(m,ts,df);               % Fourier transform  
M=M/fs;                                   % scaling  
f=[0:df1:df1*(length(m)-1)]-fs/2;       % frequency vector 
u=(1+a*m_n).*c;                          % modulated signal 
[U,u,df1]=fftseq(u,ts,df);               % Fourier transform  
U=U/fs;                                   % scaling  
signal_power=spower(u(1:length(t)));    % power in modulated signal 
pmn=spower(m(1:length(t)))/(max(abs(m)))^2;  % power in normalized message 
eta=(a^2*pmn)/(1+a^2*pmn);                % modulation efficiency 
noise_power=eta*signal_power/snr_lin;    % noise power 
noise_std=sqrt(noise_power);            % noise standard deviation 
noise=noise_std*randn(1,length(u));    % generate noise 
r=u+noise;                                % noise plus modulated signal 
[R,r,df1]=fftseq(r,ts,df);               % Fourier transform  
R=R/fs;                                   % scaling  
 
signal_power        % Modulated signal power value 
eta             % Modulation efficiency value 
 
%Plots 
plot(t,m(1:length(t))); axis([0 0.15 -2.1 2.1]); xlabel('Time'), title('The message signal'); 
figure; plot(t,c(1:length(t)));axis([0 0.15 -2.1 2.1]); xlabel('Time'); title('The carrier')  
figure; plot(t,u(1:length(t))); axis([0 0.15 -2.1 2.1]); xlabel('Time'), title('The modulated signal') 
figure; subplot(2, 1,1), plot(f,abs(fftshift(M))) ; xlabel('Frequency'),title('Spectrum of the message signal') 
subplot(2,1,2), plot(f,abs(fftshift(U))) ; title('Spectrum of the modulated signal'), xlabel('Frequency') 
figure; subplot(2,1,1), plot(t,noise(1:length(t))) ; title('noise sample'), xlabel('Time') 
subplot(2,1,2), plot(t,r(1:length(t))) ; title('Signal and noise'), xlabel('Time') 
figure; subplot(2, 1,1), plot(f,abs(fftshift(U))) ; title('Signal spectrum'), xlabel('Frequency') 
subplot(2,1,2), plot(f,abs(fftshift(R))) ; title('Signal and noise spectrum'), xlabel('Frequency') 
end; 
 
function p=spower(x) 
 
%SPOWER  Returns the power in signal x 
p=(norm(x)^2)/length(x); 
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Example C.1.2: MATLAB demonstration of AM demodulation. Let us recall the Matlab implementation 
of AM case in Example 4.A.1 and use the multiplier (mixer) demodulator discussed in the text followed 
by a low-pass filter to recover the original signal. Again the message signal and the carrier are as 
before: 
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with Hzf c 250= , Secondst 15.00 = , and the modulation index: 85.0== µmhu . This signal is 

corrupted by a Gaussian noise with an SNR of 10.0 dB. Note that  0.2|)(max(| =tx . 

 As we clearly see from the plots both in the frequency-domain and the time-domain, the envelope 
detector can closely track and reconstruct the original signal.  
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% Example on DSB-AM demodulation.   

% System Parameters: 
t0=.15; ts=1/150 0;                      % signal duration & sampling interval 
fc=250; fs=1/ts;                         % carrier and sampling frequency 
t=[0:ts:t0];                             % time vector 
df=0.3;                                  % desired frequency resolution 
m=[ones(1,t0/(3*ts)),-2*ones(1,t0/(3*ts)),zeros(1,t0/(3*ts)+1)];  % Signal Generation 
c=cos(2*pi*fc.*t);              % carrier signal 
u=m.*c;                        % the modulated signal 
y=u.*c;                                    % mixing at the receiver 
[M,m,df1]=fftseq(m,ts,df);  [U,u,df1]=fftseq(u,ts,df);                    % Fourier transforms  
[Y,y,df1]=fftseq(y,ts,df);                % Fourier transform      
M=M/fs; U=U/fs;   Y=Y/fs;                                                                          % scaling 
 
% Output Low-Pass Filter and filtering the output signal 
f_cutoff=150;                          % cutoff freq. of the filter 
n_cutoff=floor(150/df1);               % design the low-pass filter for recovery. 
f=[0:df1:df1*(length(y)-1)]-fs/2; 
H=zeros(size(f)); H(1:n_cutoff)=2*ones(1,n_cutoff);     
H(length(f)-n_cutoff+1:length(f))=2*ones(1,n_cutoff); 
DEM=H.*Y;             % spectrum of the filter output 
dem=real(ifft(DEM))*fs;          % filter output 
 
%Plotting Routines 
clf; figure; plot(f,fftshift(abs(M))); title('Spectrum of the the Message Signal'); xlabel('Frequency') 
figure; plot(f,fftshift(abs(U))); title('Spectrum of the Modulated Signal'); xlabel('Frequency') 
figure; plot(f,fftshift(abs(Y))); title('Spectrum of the Mixer Output'); xlabel('Frequency') 
figure; subplot(3,1,1), plot(f,fftshift(abs(Y))) ; title('Spectrum of the Mixer Output'); xlabel('Frequency') 
subplot(3,1,2), plot(f,fftshift(abs(H))); title('Lowpass Filter Characteristics'); xlabel('Frequency') 
subplot(3,1,3), plot(f,fftshift(abs(DEM))); title('Spectrum of the Reconstructed output signal'); 
xlabel('Frequency') 
figure; subplot(2,1,1), plot(f,fftshift(abs(M))); title('Spectrum of the Original Message Signal'); 
xlabel('Frequency') 
subplot(2,1,2), plot(f,fftshift(abs(DEM))) 
title('Spectrum of the Reconstructed output signal'); xlabel('Frequency') 
figure; subplot(2,1,1), plot(t,m(1:length(t))); title('The Original Message Signal'); xlabel('Time') 
subplot(2,1,2), plot(t,dem(1:length(t))); title('The Reconstructed output signal'); xlabel('Time'); 
 
function [M,m,df]=fftseq(m,ts,df)  
 
%FFTSEQ  Generates M, the FFT of the sequence m.  
%  The sequence is zero padded to meet the required frequency resolution df. 
%  ts is the sampling interval. The output df is the final frequency resolution. 
%  Output m is the zero padded version of input m. M is the FFT. 
 
fs=1/ts; 
if nargin == 2 
   n1=0; 
else 
   n1=fs/df; 
end 
 
n2=length(m); n=2^(max(nextpow2(n1),nextpow2(n2))); 
M=fft(m,n); m=[m,zeros(1,n-n2)]; df=fs/n; 
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Example C.1.3: MATLAB demonstration on Amplitude Shift keying (ASK), Phase Shift Keying ( PSK ) 
and Frequency Shift Keying ( FSK ) to demonstrate modulating different parts of a sinusoidal carrier 
signal.  

It is worth noting that these techniques together with many of their derivatives are normally discussed 
together with the digital modulation concepts.  

Plots below are generated using the Matlab Communications Toolbox. 

• Here the baseband signal used in each case is an 0.1Hz Non-Return-to-Zero pulse signal 
which alterna tes between a logic “0” and a logic “1”.  

• The carrier signal is a 0.5Hz Cosine waveform.  

Case 1: ASK: In Amplitude Shift Keying (ASK), the signal alternates between a “0” and a cosine signal:  
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Case 2: FSK: In Frequency Shift Keying (FSK), two carrier signals are used instead of one. In our 
example, we chose the second carrier frequency to be twice the first carrier frequency. The second 
carrier frequency will occur when a symbol 0 occurs. The definition of FSK is given below, where n is a 
positive integer :  

 
From the equation, we can see that in order to detect the logic level, we would need to be able to 
detect the two different frequencies.  
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Case 3: PSK: In Phase Shift Keying (PSK), the signals for logic “0” and logic “1” are 180 degrees out of 
phase with one another. By detecting  the phase shift, we can determine if the transmitted signal is a 
logic 0 or logic 1. The definition of FSK is :  

 
As can be seen from the definition, the signal is shifted by 180 degrees when a symbol 0 istransmitted. 
PSK has extensively used in both military and commercial communications. 
 

 

C.2. Examples on Angle Modulation Systems  

Example C.2.1:   MATLAB Demonstration of Double Sideband Suppressed Carrier (Ordinary) AM. Let 
us assume that the message has the following three values in specified intervals and the carrier is a 
sinusoid: 
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and  
 )2()( ftCostc cπ=                             (C.2.2) 

with Hzfc 250= , Secondst 15.00 = , and the modulation index: 85.0=µ=mhu . Furthermore, 
suppose that the signal has been corrupted by a Gaussian noise with an SNR of 10.0 dB.  

Let us note that that  0.2|)(max(| =tx  and re-write the signal in terms of rectangular windows in the 
time-domain, we have: 
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Term-by-term FT and re-organization of various terms results in: 

 )21)(05.0(05.0)( 1.005.0 fjfj efSincewX π−π− −=  
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The corresponding modulated signal (convolution in frequency-domain) turns out to be: 
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Power budget of the message and the normalized message: 
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The modulation efficiency for the specific values given and computer is: 
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Finally, the power in the modulated signal is computed as: 
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Example C.2.2:   Consider the following message signal: 
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Using Matlab tools demonstrate the FM modulation for this signal with 200=cf , 50=fk , a 

sampling frequency of  kHzfS 0.2=  and a frequency resolution of 25.0=fd .  

% M-File for  Frequency Modulation (FM) 
% The message signal is +5.0 for 0 < t < t0/3, -2.0 for t0/3 < t < 2t0/3  
% and zero otherwise. 
% System Parameters 

t0=.15; ts=0.0005;                 % signal duration and sampling interval 
fc=200;   fs=1/ts;                           % carrier frequency and sampling frequency 
kf=50;                                 % Modulation index 
t=[0:ts:t0];                           % time vector 
df=0.25;                               % required frequency resolution 

 
% Message signal and its Fourier transform  

m=[5*ones(1,t0/(3*ts)),-2*ones(1,t0/(3*ts)),zeros(1,t0/(3*ts)+1)]; 
int_m(1)=0; 
for i=1:length(t)-1                    % Integral of m 
  int_m(i+1)=int_m(i)+m(i)*ts; 
end 
[M,m,df1]=fftseq(m,ts,df);            % Fourier transform  
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% Modulation Process 

M=M/fs;                                 % scaling 
f=[0:df1:df1*(length(m)-1)] -fs/2;     % frequency vector 
u=cos(2*pi*fc*t+2*pi*kf*int_m);       % modulated signal 
[U,u,df1]=fftseq(u,ts,df);             % Fourier trans form  
U=U/fs;                                 % scaling 

 
% Plots 

pause     % Press any key to see a plot of the message and the modulated signal 
stem(t,m(1:length(t)));axis([0 0.15 -2.5 6.0]);  
xlabel('Time'); title('The message signal'); figure; 
stem(t,int_m(1:length(t)),'g'); axis([0 0.15 -0.1 0.4]),  
xlabel('Time'), title('The Integral of the message signal' ); figure; 
plot(t,u(1:length(t)),'r');axis([0 0.15 -2.1 2.1]),  
xlabel('Time'),title('The modulated signal' ) 
pause      % Press any key to see plots of the magnitude of the message and the 
      % modulated signal in the frequency domain. 
figure; 
subplot(2,1,1), plot(f,abs(fftshift(M)))  
xlabel('Frequency'),  
title('Magnitude-spectrum of the message signal') 
subplot(2,1,2), plot(f,abs(fftshift(U)),'r')  
title('Magnitude-spectrum of the modulated signal' ) 
xlabel('Frequency') 
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A few important observations from the results associated with this example: 
• The spectrum of an FM signal contains a strong carrier component and an infinite number of side 

frequencies located symmetrically on either side of the carrier at frequency separations of 

L,3,2, mmm fff  . Therefore, the result is drastically different from AM, where there were spectra 
located at two locations only. 

• For small ,β  Bessel coefficients of order )(J 0 β  and )(J1 β are significant and the rest is almost 
zero. The spectrum is composed of a carrier and two side frequencies. This is the special case of 
NBFM (NBPM) as presented earlier. 

• )(J n β oscillates for increasing β  with decreasing amplitude though. 

• )(J n β is zero at several values of .β  For instance, )(J 0 β  is zero at 2.4048, 5.5201, and 8.6537, 
then the spectrum of the output will not contain a component at the carrier frequency for these 

values of β  and hence, they are known as the carrier nulls in the  business. Similarly, )(J1 β  has 
nulls at 0, 3.8317, and 7.0156 resulting at zero components at the first sideband 

locations: mc fff ±= . 

 
Example C.2.3:   Let us compute the multiplier and mixer frequencies, n1, n2, and  fLO for an Armstrong 
transmitter shown below. In this case, the NBFM crystal oscillator is operating at 200  kHz, with a 
maximum deviation ratio, 2.0=β . The frequency range of the input audio signal is expected to be in 

the range: 50 ≤ fm ≤ 15 kHz, the carrier frequency is 108=cf  MHz, and the expected frequency 
deviation to be .000,75 Hzf =∆  
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Figure C.2.1 Functional diagram of the FM generator in Example C.2.3. 

∆f1  = β fm = (0.2)(50) = 10   Hz 
∆f / ∆f1 = 75 x 103 / 10 = 7500 = n1*n2 
f2 = n1 f1 = n1(200,000)   Hz 

 
In the down-conversion stage, we need: 

  f2 – fLOCAL = fc /n2 
 
Therefore, the relationship among various parameters becomes  

 .)10(
139210108000,2007500 6

22

6

2
11 Hz

nn
xx

n
f

fnf c
LOCAL =

−
=−=  

If we choose: 1502 =n , then we  need a mutliplication factor of: 501 =n  and the corresponding local 

oscillator frequency of 28.9=LOCALf MHz can do the job. 
 
Example C.2.4:  Pair of simple RC-circuits are used as pre-emphasis and de -emphasis circuits. In this 
case the critical frequency values are: ./000,30.2;/2100.2 21 sradianswsradiansw π≥π≈  

 
Figure C.2.2. RC-networks for pre -emphasis and de-emphasis in Example C.2.4. a.) Pre -emphasis 
RC-filter, b.) Log frequency response of (a); c.) De-emphasis RC-filter, and d.) its log frequency 
response. 
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The transfer function of the pre-emphasis filter: 
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Let us set the filter gain to: 12 / wwK =  and substitute above to obtain:  
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Notes:  

1. For small values of w, 1ω<<ω , we have 1)( ≈wH P , which implies that low-frequency (l.f.) 
components of the input signal is unaffected by this operation. 

2. However, for the mid-frequency range: 21 ω<<ω<<ω , we can approximate the filter frequency 

response by: ( ) 1/ ωω≅ω jH p .  Let us recall the Fourier transform property that multiplication by 

jw in the frequency-domain is equivalent to a differentiation in the time-domain, the filter now acts 
as a differentiator for 2.1 –  15 kHz. 

3. The transfer function of the de-emphasis filter is given by: 

1

1)(
ω+ω

ω
=ω

j
H D                (C.2.5) 

4. For low frequencies, that is: 2ω<<ω , we have the property: 

kHzrangefrequencytheinwHwH DP 150:1)().( −≈              (C.2.6) 

5. Dolby Labs has developed a similar but more elaborate scheme for noise reduction in tapes and 
other audio applications. 

 


