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Appendix B: Supplementary Problems on Signal Analysis 
B.1. Examples on Time-Domain and Frequency-Domain Signals  

 
Example B.1.1: Given an asymmetric discrete signal find its reflection. It is obtained by reflecting every 
delta function in the left-hand sid e to the right-hand side and vice versa. 

)n(x )n(x −

 
Figure B.1.1 An example of a discrete signal and its reflection. 

 
Example B.1.2: Given a discrete signal, let us sketch its even and odd portions: 

 

Figure B.1.2 Even and odd portions of a discrete signal. 

B.2. Examples on Fourier Transforms and Properties 

Example B.2.1. Fourier series expansion of an exponentially decaying function defined as 2/)( tetx −=  
and it is periodic satisfying  )()0()( ntxnTtxtx +=+= ; where the period is 1.0 seconds. In the text we 

have computed the Fourier series coefficients for this function to be: 
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Example B.2.2. Let us study the Example 2.9 in the text for the special case ∞→→ A;a 0  such that 

.Aa 1→ The signal is plotted on top in Figure B.2.1. In this case, we can easily show that: 00 1 T/C = .  

This is same as saying let the pulse train approach to an impulse train. In this case we have: 

  ∑∑
∞

=

∞

−∞=
+=−δ

1
000

n
n

n
)tnwcos(.CC)nTt(   

The coefficients can be explicitly computed: 
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which are all constant as shown as the bottom plot in Figure B.2.1. So, we have another impulse train 
with a different periodicity and heights. 
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Figure B.2.1. Impluse Train and its spectral coefficients. 

% Magnitude & Phase Plots for an exponential decay function  
n=0:16;  
amp=zeros(size(n));   
theta=zeros(size(n));  
k=[1:1:length(n)];  
k2=k .* k;  
denom2=1+16*pi*pi .* k2; denom=sqrt(denom2);  
coeff=0.79*2 ./denom;  coeffdb=20.0 .* log10(coeff); 
theta=-atan(4*pi .* k); theta(1) =0; 
coeffdb(1)=20*log10(0.79);   
 
%Plotting funtions using “stem” with line thicness and color 
hndl=stem(k,coeffdb, 'filled'); set(hndl,'lineWidth',3); set(hndl,'Color','red'); 
title(' Coefficients Plot in dB');  xlabel('frequency index'); ylabel('Amplitude in dB'); axis; 
figure; 
hndl=stem(k,theta, 'filled'); set(hndl,'lineWidth',3);  set(hndl,'Color','green'); 
title('Phase Plot of Coefficients'); xlabel('frequency index'); ylabel=('Phase');  
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Example B.2.2. M-file for Example 2.11. Fourier Transform of a single Sinusoid. 

Example B.2.3. Fourier transform of a pulse train for (i) the case when the period Tp is fixed and the 
pulse width T varies and (ii) when Tp is fixed and the pulse width T varies.  

 

 
(i) Case for Tp is fixed and the pulse width T varies: 

 

% Example  on Fourier Spectrum of a single sinusoid  
% Initialization 
M=4; N=2^M; f0=2;  
w0=2*pi*f0;  
n=0:1:N -1;  
T0=1/f0;  delta_t=T0/N;  t=n*delta_t; 
 
% Signal generation and FFT 
xt = 5.0 * cos(w0*t);  
XW = fft(xt); XW=XW(:); 
nsym =-N/2:1:N/2-1;  fsym=nsym/T0; delta_f=1/delta_t; 
Cn = 1/N * XW;  Cn=fftshift(Cn)'; 
Theta = (180/pi)*angle(Cn+0.001); Theta=fftshift(Theta)'; 
Cn = Cn(:); Theta=Theta(:); 
 
% Plotting 
figure; stem(fsym,abs(Cn)); 
title('Amplitude Spectrum'); xlabel('Frequency');ylabel('Amplitude'); 
 
figure; axis([-20,20,-2,2]); stem(fsym,Theta); 
title('Phase Spectrum'); xlabel('Frequency'); ylabel('Phase'); 

Pulse Width T = 0.1Tp Pulse Width T = 0.2Tp Pulse Width T = 0.05Tp 
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(ii) Case for  T is fixed but Tp varies: 

 
(More information on this example can be found in the “State-of-the-art Crossmedia Tools for a Course 
on Communication Systems” by the author at the website: http://akhisar.sdsu.edu/crossmedia/) 

 
Example B.2.4. Fourier transform of a unit-step function. As we can see from the sketch below, we can 

write our unit-step function as a sum of two simple functions: )(.
2
1

2
1

)( tSgntu +=  

Here )(tSgn is the sign indicator function. But we can also write the derivative of this expression: 

  )()](.2/1[ ttSgn
dt
d

δ=      or equivalently:    1)}(.2/1{).( =tSgnFjw ,  

which results in a form:  
  jwtSgnF /1)}(.2/1{ =    and    )()(2).2/1(}2/1{ wwF πδπδ ==   
 
Finally, we combine these two transforms to obtain:    
       jwwtuF /1)()}({ += πδ  

 

Example B.2.5. Let us perform the numerical convolution of a unit-step and exponential time functions. 
That is: 

  )()( tutx =  

  )(.)( tueth t−=  

and the output from the system is: 

  )(.)()()()( tuetuthtxty t−⊗=⊗=  
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Example B.2.6. Numerical convolution of two time-functions of different length. 

 

% Convolution of two-discrete finite pulses 
n=-4:20; 
x=zeros(size(n)); 
h=zeros(size(n)); 
x(2:8)=ones(size(n(2:8))); 
h(5:13)=ones(size(n(5:13))); 
 
%Plot of the input and system 
axis([-4,20,0,2]) 
subplot(311),stem(n,x); 
grid; 
title('Input Signal');  
xlabel('n' );  
ylabel('x(n)'); 
subplot(312),stem(n,h,'g'); 
grid; 
xlabel('n' );  
ylabel('h(n)'); 
 
title('Impulse Response of the System');  
 
%convolution 
y=conv(h,x); 
subplot(313),stem(n,y(5:29),'r' );grid; 
title('Output Signal');  
xlabel('n' ); ylabel('y(n)'); 
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% Numerical convolution of a unit-step and an exponential signal. 
t=0:.05:1; h=exp(-1*t) 
x= ones(size(t)) 
y=conv(h,x)  
 
ptit='Numerical convolution' 
xlab='time, seconds' 
ylab='approximation of y(t)'; 
displot(t,y(1:21),xlab,ylab,ptit) 
grid; axis 
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Example B.2.7. Consider a message signal with characteristics: 
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Let us use to modulate a 25 Hz sinusoidal carrier using DSB-SC AM and plot the modulated signal1. It 
is reasonable to use a 100 Hz sample rate so we can see more details.  If we examined the spectrum 
of the modulated signal we should see the center frequency move from 0 to 25 Hz.  But we were not 
asked to show this.  Using MATLAB, we form the signal thus: 

t=-2:.01:2; % Look at 4 seconds of the signal total 
xt=sinc(10*t);  
plot(t,xt,'r'),set(gcf,'color',[1 1 1]),title('Plot of x(t)');    

Now define a carrier to modulate the signal with: 
c=cos(2*pi*25.*t); % 25 Hz carrier   
plot(t, c,’b’); 
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Now modulator output is given by:  

dsbsc_am=xt.*c;   
plot(t,dsbsc_am,'r'),title('Plot of DSB_SC Modulation with m(t)');   
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1 Even thought the terminology DSB-SC AM is not covered yet, it is simply a time-domain multiplication of a 
signal )(tx with a carrier signal, also a sinusoid .  
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B.3. Examples on Filters, Power Spectral Density and Noise 
 
Example B.3.1: Let us design a Butterworth Filter with a normalized bandwidth of B=1.0 
radians/second and an amplitude level π=K and the order of the filter n=3 using Matlab Tools. For 
these parameters we write the expressions for the magnitude and phase responses:  

)}1()1({)( −−+= wuwuKwH                  (B.3.1) 

wt .0−=θ                                (B.3.2) 
The combined frequency response is simply the product in frequency-domain: 

wjtewuwuKwH .0)}.1()1({)( −−−+=                 (B.3.3) 
 
The inverse Fourier transform will give us the impulse response of this filter: 
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which is a non-causal function and it cannot be implemented. However, by delaying the impulse 
response by a reasonable amount and terminating appropriately, we can come close to this ideal filter: 
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            (B.3.5) 

Using Matlab tools we have implemented (B.3.5) and the filter characteristics and responses are 
shown below together with the m-file. Other filters can easily be designed by appropriately modifying 
the parameters in this source code. 

% Example  on Ideal and Butterworth Low Pass Filters  
% h(n) for an ideal lowpass filter (zero phase) 
t=-4*pi:.1:4*pi 
y=sin(t) ./t; axis([1 2 3 4]); axis 
plot(t,y,'r'); title('h(n) for an ideal LPF (zero phase)'); xlabel('time, t');ylabel('h(t)'); grid; 
text(.65,.8,'h(t) = sin(t)/t','sc'); pause; 
 
%Impulse response: ideal LPF (linear phase) 
t=-4*pi:.1:4*pi;  
y=sin(t-5) ./(t-5); axis([1 2 3 4]); axis; 
plot(t,y,'r'); title('Impulse response: ideal LPF (linear phase)'); xlabel('time, t'); ylabel('h(t)'); grid; 
text(.25,.8,'h(t) = sin(t-5)/(t-5)','sc'); pause; 
 
%Butterworth lowpass filter 
w=-3e3:100:3e3; b=[1e9]; 
a=[1,2e3,2e6,1e9]; h=freqs(b,a,w); 
M=abs(h); g=.707*ones(size(w))*max(M); axis([1 2 3 4]); axis; 
plot(w,M,'r',w,g,'b'); title('Butterworth LPF Magnitude'); xlabel('frequency, rad/s'); ylabel('magnitude, M'); 
grid; text(.2,.68,'-3dB','sc'); pause; 
P=angle(h); plot(w,P,'r'); title('Butterworth LPF Phase'); xlabel('frequency, rad/s'); ylabel('phase, radians'); 
grid; pause; 
 
%Impulse response for LPF Butterworth 
num=[1e9]; den=[1,2e3,2e6,1e9]; 
t=0:.0001:.01;    % start time:increment:finis; 
[y,v,t]=ksimptf(num,den,t);    % call ksimptf;   
axis([-0.001,0.01,-100,500]);  
plot(t,y,'r'); title('Impulse response for LPF Butterworth '); xlabel('time, seconds'); ylabel('h(t)'); grid; axis; 
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Example B.3.2: In this example, we try to recover a signal from a combination of two signals, one at 
100Hz signal using Chebyshev Type 1 and 2 filters, Butterworth filter, FIR filter and Elliptic filter. All 
filters are lowpass filters are of order 8 and the cutoff is set at 125Hz.  

 
        Original Signal ( Prior to Filtering )       Output from the Butterworth Filter  

        
 
       Output from the Chebyshev Type 1 Filter              Output from the Chebyshev Type 2 Filter  

        
 
       Output from the Elliptic Filter Output          Output from the FIR type Filter Output 
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Example B.3.3: In this example, we will illustrate the technique of Fast Convolution using Fourier 
transform (FFT and IFFT).   
 
For an N point signal and the system function, the ordinary convolution operation has a computational 
complexity  of N2. When N is large and the need to perform convolution in real-time is a necessity, the 
system requirement may become unrealistic.  
 
For instance, for a speech segment of 0.5 seconds duration sampled at 8000 samples per second, N = 
4000 and N2 = 16*106  convolutions computations are needed. This puts an unrealistic burden on the 
computing power requirements of the system. On the other hand, the same task can be performed 
using FFT techniques. 
 
Consider a sequence of N = 4096 samples ][ nx , which will be convolved with another set of N = 4096 

samples of a system transfer function: ][ ny . Instead of performing a convultion operation as we did in 
Example B.1.8 above, let us use the following procedure: 
 

Step 1. Perform FFT on nx  and ny  to obtain kX  and kY . 

Step 2. Multiply kX  and .kY  
Step 3. Perform the summation and scaling operations required by the convolution equation. 
 
If we count the number of operations in this procedure , we get 2*( 4096 log2 4096 ) = 98,304 for step 1, 
4096 multipliers and 4096 sums for the next two steps. The overall operation count is approximately 
105 versus 1.677 * 107 in the direct convolution technique. Thius  simple example demonstrates vividly 
that the technique of fast convolution using FFT has improved the performance by 167 fold. 

 
 
These diagrams above and the next page show that convolution of a typical excitation signal with the 
impulse of an electromagnetic propagation channel.  These impulses represent the paths of  various 
reflectors. Therefore, the receiver input is the ensemble of all link responses with different delays and 
attenuation 
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Example B.3.5: In this example we compute the power and power spectral density of a sum of two 
sinusoids of unit amplitude and duration T=10 seconds; one located at 50 Hz and the other at 300 Hz. 
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Let us sample the combined signal at a rate 1000 samples per second.  It is not  difficult to see from 
the PSD curves of Figure B.3.2, we have two harmonics located at 50 and 300 Hz. 

 

% MATLAB script Power Spectral Density and Power Computation 
ts=0.001; fs=1/ts;                            
t=[0:ts:10];                        
x=cos(2*pi*50*t)+cos(2*pi*300*t);   
p=spower(x);psd=spectrum(x,1024);               
specplot(psd,fs) 
 
function p=spower(x) 
%  SPOWER, Returns the power in signal x 
p=(norm(x)^2)/length(x); 
 
Answer:  P=1.0003 
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Figure B.3.2. One-sided power spectral density for Example B.2.5. 

 

 

Example B.3.6: Using  Matlab tools we will generate 100, 10,000, and 1,000,000 Gaussian random 
numbers and plot both the PDF and PSD. The m-file for this example can be found at the end of this 
chapter. The PDF and PSD plots are shown belo w. As the number of noise samples increases the 
PDF approaches to a true Gaussian (normal, bell-curve) and the PSD becomes whiter. 

%   Example on Gaussian Noise Generation and PSD 
%       We will use n=100,10000, and 1000000 samples in 
%        generating almost true Gauassian PDF 
n=1000000; s=1.0; 
noise=s*randn(1,n); 
x_coor=-4:0.1:4; 
pdf=hist(noise,x_coor); 
pdf=pdf/n; 
bar(x_coor,pdf), xlabel(‘X’), ylabel(‘PDF’), title(‘Gaussian PDF’); 
f=1:256; 
psd=spectrum(noise) 
figure; bar(psd), xlabel(‘Frequency’), ylabel(‘PSD’),title(‘PSD’); 
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Figure B.3.2. Gaussian Noise PDF and PSD for 100, 10,000, and 1,000,000.  
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Example B.3.7: In this example, we demonstrate correlation of a signal corrupted with uniform white 
noise. The signal is given by  
 

 10000)5.0.(60)20/**2( <<−+= kforrkSinx kk π  

where kr is a random function. In the given equation, we note that the sine wave is just barely 

discernible in the white noise, which is typical when the SNR is low. The first plot shows the white 
noise as the most dominant component. However, it is possible to detect the sinusoidal component in 

kx  by performing an autocorrelation analysis. The sinusoidal component in kx is clearly detectable as 
shown in the second plot which is the autocorrelation function of the data sequence. This detection 
was successful as the sine wave is the only correlated or 'coherent' part of the signal.The 

autocorrelation plot shows an impulse at n=0 which is typically due to the white noise in kx , which is 

uncorrelated for n not equal to zero , plus a cosine component due to the sine wave in kx . Therefore, 
it can be deduced that the correlation operation can be used effectively to detect periodic components 
in a signal. 

 

 

 

 


